Suppr超能文献

竞争风险模型中的高维特征选择:一种使用分裂-合并集成算法的稳定方法。

High-dimensional feature selection in competing risks modeling: A stable approach using a split-and-merge ensemble algorithm.

机构信息

Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.

Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA.

出版信息

Biom J. 2023 Feb;65(2):e2100164. doi: 10.1002/bimj.202100164. Epub 2022 Aug 7.

Abstract

Variable selection is critical in competing risks regression with high-dimensional data. Although penalized variable selection methods and other machine learning-based approaches have been developed, many of these methods often suffer from instability in practice. This paper proposes a novel method named Random Approximate Elastic Net (RAEN). Under the proportional subdistribution hazards model, RAEN provides a stable and generalizable solution to the large-p-small-n variable selection problem for competing risks data. Our general framework allows the proposed algorithm to be applicable to other time-to-event regression models, including competing risks quantile regression and accelerated failure time models. We show that variable selection and parameter estimation improved markedly using the new computationally intensive algorithm through extensive simulations. A user-friendly R package RAEN is developed for public use. We also apply our method to a cancer study to identify influential genes associated with the death or progression from bladder cancer.

摘要

变量选择在高维数据的竞争风险回归中至关重要。尽管已经开发了惩罚变量选择方法和其他基于机器学习的方法,但这些方法在实践中往往存在不稳定性。本文提出了一种名为随机近似弹性网络(RAEN)的新方法。在比例亚分布风险模型下,RAEN 为竞争风险数据的大 p-小 n 变量选择问题提供了一种稳定且可推广的解决方案。我们的通用框架允许所提出的算法适用于其他事件时间回归模型,包括竞争风险分位数回归和加速失效时间模型。我们通过广泛的模拟表明,新的计算密集型算法显著改善了变量选择和参数估计。我们开发了一个用户友好的 RAEN R 包供公众使用。我们还将我们的方法应用于癌症研究,以确定与膀胱癌死亡或进展相关的有影响的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/927b/10087963/540240184df5/BIMJ-65-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验