Suppr超能文献

非连锁基因型的联合效应:在欧洲癌症与营养前瞻性调查-波茨坦病例队列研究中对2型糖尿病的应用

Joint effect of unlinked genotypes: application to type 2 diabetes in the EPIC-Potsdam case-cohort study.

作者信息

Knüppel Sven, Meidtner Karina, Arregui Maria, Holzhütter Hermann-Georg, Boeing Heiner

机构信息

Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany.

Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany.

出版信息

Ann Hum Genet. 2015 Jul;79(4):253-63. doi: 10.1111/ahg.12115. Epub 2015 Apr 23.

Abstract

Analyzing multiple single nucleotide polymorphisms (SNPs) is a promising approach to finding genetic effects beyond single-locus associations. We proposed the use of multilocus stepwise regression (MSR) to screen for allele combinations as a method to model joint effects, and compared the results with the often used genetic risk score (GRS), conventional stepwise selection, and the shrinkage method LASSO. In contrast to MSR, the GRS, conventional stepwise selection, and LASSO model each genotype by the risk allele doses. We reanalyzed 20 unlinked SNPs related to type 2 diabetes (T2D) in the EPIC-Potsdam case-cohort study (760 cases, 2193 noncases). No SNP-SNP interactions and no nonlinear effects were found. Two SNP combinations selected by MSR (Nagelkerke's R² = 0.050 and 0.048) included eight SNPs with mean allele combination frequency of 2%. GRS and stepwise selection selected nearly the same SNP combinations consisting of 12 and 13 SNPs (Nagelkerke's R² ranged from 0.020 to 0.029). LASSO showed similar results. The MSR method showed the best model fit measured by Nagelkerke's R² suggesting that further improvement may render this method a useful tool in genetic research. However, our comparison suggests that the GRS is a simple way to model genetic effects since it does not consider linkage, SNP-SNP interactions, and no non-linear effects.

摘要

分析多个单核苷酸多态性(SNP)是一种很有前景的方法,可用于发现单基因座关联之外的遗传效应。我们提出使用多位点逐步回归(MSR)来筛选等位基因组合,以此作为一种模拟联合效应的方法,并将结果与常用的遗传风险评分(GRS)、传统逐步选择法以及收缩法LASSO进行比较。与MSR不同,GRS、传统逐步选择法和LASSO通过风险等位基因剂量对每种基因型进行建模。我们在EPIC-波茨坦病例队列研究(760例病例,2193例非病例)中重新分析了20个与2型糖尿病(T2D)相关的非连锁SNP。未发现SNP-SNP相互作用和非线性效应。MSR选择的两个SNP组合(Nagelkerke's R² = 0.050和0.048)包括8个SNP,平均等位基因组合频率为2%。GRS和逐步选择法选择了几乎相同的由12个和13个SNP组成的SNP组合(Nagelkerke's R²范围为0.020至0.029)。LASSO显示出类似的结果。以Nagelkerke's R²衡量,MSR方法显示出最佳的模型拟合度,这表明进一步改进可能会使该方法成为遗传研究中的有用工具。然而,我们的比较表明,GRS是一种模拟遗传效应的简单方法,因为它不考虑连锁、SNP-SNP相互作用以及非线性效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验