From the Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-R.L., P.-J.G.); Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China (W.-L.S., C.Y., P.-J.G.).
Arterioscler Thromb Vasc Biol. 2015 Jun;35(6):1413-22. doi: 10.1161/ATVBAHA.115.305706. Epub 2015 Apr 23.
Recent studies have shown that altered mitochondrial dynamics impairs the function in senescent endothelial cells (ECs). However, the underlying molecular mechanism remains to be elucidated. Herein, we investigated the role and underlying mechanism of mitochondrial fission protein dynamin-related protein 1 (DRP1) in vascular aging.
We found that DRP1 expression is decreased in senescent ECs, accompanied with long interconnected mitochondria and impaired angiogenic function. In addition, there was marked increase of autophagosomes but not of autolysosomes (assessed as punctate dual fluorescent mCherry-GFP (green fluorescent protein) tandem-tagged light chain 3 expression) in senescent ECs, indicating impaired autophagic flux. DRP1 knockdown or pharmacological inhibition in young ECs resulted in elongated mitochondria, suppressed autophagic flux, premature senescence, and impaired angiogenic function. In contrast, adenoviral-mediated overexpression of DRP1 in senescent ECs restored autophagic flux and improved angiogenic function. EC senescence was associated with the increase of mitochondrial reactive oxygen species and antioxidant N-acetyl-cysteine restored autophagosome clearance and improved angiogenic function. Consistently, en face staining of old rat thoracic aorta revealed a decrease of DRP1 expression and increase of autophagosomes accumulation. Furthermore, in vivo knockdown of Drp1 in common carotid arteries significantly impaired the autophagosome clearance. Importantly, downregulation of Drp1 directly abrogated microvessels outgrowth from ex vivo aortic rings.
These results suggest that loss of DRP1 during senescence exacerbates ECs dysfunction by increasing mitochondrial reactive oxygen species and subsequently inhibiting autophagic flux.
最近的研究表明,线粒体动力学的改变会损害衰老内皮细胞(ECs)的功能。然而,其潜在的分子机制仍有待阐明。在此,我们研究了线粒体裂变蛋白动力相关蛋白 1(DRP1)在血管衰老中的作用及其潜在机制。
我们发现,DRP1 在衰老的 ECs 中表达降低,伴随着长的相互连接的线粒体和受损的血管生成功能。此外,衰老的 ECs 中自噬体明显增加,但自溶体(评估为点状双荧光 mCherry-GFP(绿色荧光蛋白)串联标记轻链 3 表达)没有增加,表明自噬通量受损。在年轻的 ECs 中敲低或药理学抑制 DRP1 会导致线粒体变长、自噬通量受到抑制、衰老提前发生,并损害血管生成功能。相比之下,在衰老的 ECs 中过表达 DRP1 的腺病毒可恢复自噬通量并改善血管生成功能。EC 衰老与线粒体活性氧的增加有关,抗氧化剂 N-乙酰半胱氨酸可恢复自噬体清除并改善血管生成功能。一致地,对老年大鼠胸主动脉的正面染色显示 DRP1 表达减少和自噬体积累增加。此外,在颈总动脉中体内敲低 Drp1 会显著损害自噬体的清除。重要的是,Drp1 的下调直接阻断了来自离体主动脉环的微血管生长。
这些结果表明,衰老过程中 DRP1 的缺失通过增加线粒体活性氧来加剧 ECs 功能障碍,随后抑制自噬通量。