Suppr超能文献

使用光学相干断层扫描分析人宫颈组织的三维超微结构。

Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography.

作者信息

Gan Yu, Yao Wang, Myers Kristin M, Vink Joy Y, Wapner Ronald J, Hendon Christine P

机构信息

Department of Electrical Engineering, Columbia University, New York, New York, USA.

Department of Mechanical Engineering, Columbia University, New York, New York, USA.

出版信息

Biomed Opt Express. 2015 Mar 3;6(4):1090-108. doi: 10.1364/BOE.6.001090. eCollection 2015 Apr 1.

Abstract

During pregnancy, the uterine cervix is the mechanical barrier that prevents delivery of a fetus. The underlying cervical collagen ultrastructure, which influences the overall mechanical properties of the cervix, plays a role in maintaining a successful pregnancy until term. Yet, not much is known about this collagen ultrastructure in pregnant and nonpregnant human tissue. We used optical coherence tomography to investigate the directionality and dispersion of collagen fiber bundles in the human cervix. An image analysis tool has been developed, combining a stitching method with a fiber orientation measurement, to study axially sliced cervix samples. This tool was used to analyze the ultrastructure of ex-vivo pregnant and non-pregnant hysterectomy tissue samples taken at the internal os, which is the region of the cervix adjacent to the uterus. With this tool, directionality maps of collagen fiber bundles and dispersion of collagen fiber orientation were analyzed. It was found that that the overall preferred directionality of the collagen fibers for both the nonpregnant and pregnant samples were circling around the inner cervical canal. Pregnant samples showed greater dispersion than non-pregnant samples. Lastly, we observed regional differences in collagen fiber dispersion. Fibers closer to the inner canal showed more dispersion than the fibers on the radial edges.

摘要

在怀孕期间,子宫颈是防止胎儿娩出的机械屏障。影响子宫颈整体力学性能的潜在宫颈胶原超微结构,在维持妊娠直至足月方面发挥着作用。然而,对于妊娠和非妊娠人体组织中的这种胶原超微结构,我们了解得并不多。我们使用光学相干断层扫描来研究人子宫颈中胶原纤维束的方向性和分散性。已开发出一种图像分析工具,将拼接方法与纤维取向测量相结合,用于研究轴向切片的子宫颈样本。该工具用于分析取自子宫颈内口(即子宫颈与子宫相邻的区域)的离体妊娠和非妊娠子宫切除组织样本的超微结构。利用该工具,分析了胶原纤维束的方向性图和胶原纤维取向的分散性。结果发现,非妊娠和妊娠样本中胶原纤维的总体优先方向性都是围绕宫颈内管呈环状。妊娠样本的分散性比非妊娠样本更大。最后,我们观察到胶原纤维分散存在区域差异。靠近内管的纤维比径向边缘的纤维分散性更大。

相似文献

1
Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography.
Biomed Opt Express. 2015 Mar 3;6(4):1090-108. doi: 10.1364/BOE.6.001090. eCollection 2015 Apr 1.
2
Collagen Fiber Orientation and Dispersion in the Upper Cervix of Non-Pregnant and Pregnant Women.
PLoS One. 2016 Nov 29;11(11):e0166709. doi: 10.1371/journal.pone.0166709. eCollection 2016.
3
A continuous fiber distribution material model for human cervical tissue.
J Biomech. 2015 Jun 25;48(9):1533-40. doi: 10.1016/j.jbiomech.2015.02.060. Epub 2015 Mar 14.
4
Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
Acta Biomater. 2022 Sep 15;150:277-294. doi: 10.1016/j.actbio.2022.07.062. Epub 2022 Aug 2.
5
Characterization of the collagen microstructural organization of human cervical tissue.
Reproduction. 2018 Jul;156(1):71-79. doi: 10.1530/REP-17-0763. Epub 2018 Apr 30.
6
Identification of biomechanical properties in vivo in human uterine cervix.
J Mech Behav Biomed Mater. 2014 Nov;39:27-37. doi: 10.1016/j.jmbbm.2014.07.005. Epub 2014 Jul 14.
7
Spectroscopic photoacoustic imaging of cervical tissue composition in excised human samples.
PLoS One. 2021 Mar 3;16(3):e0247385. doi: 10.1371/journal.pone.0247385. eCollection 2021.
8
In vivo characterization of the mechanics of human uterine cervices.
Ann N Y Acad Sci. 2007 Apr;1101:186-202. doi: 10.1196/annals.1389.004. Epub 2007 Mar 15.
10
Immunohistochemical studies on collagen types in the uterine cervix in pregnant and nonpregnant states.
Am J Obstet Gynecol. 1987 Jan;156(1):138-44. doi: 10.1016/0002-9378(87)90225-0.

引用本文的文献

2
Quantitative Assessment of Collagen Remodeling during a Murine Pregnancy.
ACS Photonics. 2024 Aug 14;11(9):3536-3544. doi: 10.1021/acsphotonics.4c00337. eCollection 2024 Sep 18.
3
Elasticity of the Cervix in Relation to Uterus Position.
J Clin Med. 2024 Apr 27;13(9):2572. doi: 10.3390/jcm13092572.
4
Bioengineering and the cervix: The past, current, and future for addressing preterm birth.
Curr Res Physiol. 2023 Sep 29;6:100107. doi: 10.1016/j.crphys.2023.100107. eCollection 2023.
6
evaluation of endometrium through dual-modality intrauterine endoscopy.
Biomed Opt Express. 2022 Apr 4;13(5):2554-2565. doi: 10.1364/BOE.453191. eCollection 2022 May 1.
7
Anisotropic Mechanical Properties of the Human Uterus Measured by Spherical Indentation.
Ann Biomed Eng. 2021 Aug;49(8):1923-1942. doi: 10.1007/s10439-021-02769-0. Epub 2021 Apr 20.
8
Spectroscopic photoacoustic imaging of cervical tissue composition in excised human samples.
PLoS One. 2021 Mar 3;16(3):e0247385. doi: 10.1371/journal.pone.0247385. eCollection 2021.
10
Three-dimensional collagen fiber mapping and tractography of human uterine tissue using OCT.
Biomed Opt Express. 2020 Sep 11;11(10):5518-5541. doi: 10.1364/BOE.397041. eCollection 2020 Oct 1.

本文引用的文献

1
Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high-resolution 3D MRI.
Comput Methods Biomech Biomed Engin. 2016;19(4):404-17. doi: 10.1080/10255842.2015.1033163. Epub 2015 May 13.
2
A continuous fiber distribution material model for human cervical tissue.
J Biomech. 2015 Jun 25;48(9):1533-40. doi: 10.1016/j.jbiomech.2015.02.060. Epub 2015 Mar 14.
5
Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation.
J Mech Behav Biomed Mater. 2014 Jun;34:18-26. doi: 10.1016/j.jmbbm.2014.01.016. Epub 2014 Jan 29.
7
Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography.
Biomed Opt Express. 2013 Sep 13;4(10):2150-65. doi: 10.1364/BOE.4.002150. eCollection 2013.
8
10
Direct measurement of the permeability of human cervical tissue.
J Biomech Eng. 2013 Feb;135(2):021024. doi: 10.1115/1.4023380.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验