Suppr超能文献

使用光学相干断层扫描(OCT)对人体子宫组织进行三维胶原纤维图谱绘制和纤维束成像

Three-dimensional collagen fiber mapping and tractography of human uterine tissue using OCT.

作者信息

McLean James P, Fang Shuyang, Gallos George, Myers Kristin M, Hendon Christine P

机构信息

Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

出版信息

Biomed Opt Express. 2020 Sep 11;11(10):5518-5541. doi: 10.1364/BOE.397041. eCollection 2020 Oct 1.

Abstract

Automatic quantification and visualization of 3-D collagen fiber architecture using Optical Coherence Tomography (OCT) has previously relied on polarization information and/or prior knowledge of tissue-specific fiber architecture. This study explores image processing, enhancement, segmentation, and detection algorithms to map 3-D collagen fiber architecture from OCT images alone. 3-D fiber mapping, histogram analysis, and 3-D tractography revealed fiber groupings and macro-organization previously unseen in uterine tissue samples. We applied our method on centimeter-scale mosaic OCT volumes of uterine tissue blocks from pregnant and non-pregnant specimens revealing a complex, patient-specific network of fibrous collagen and myocyte bundles.

摘要

使用光学相干断层扫描(OCT)对三维胶原纤维结构进行自动定量和可视化,此前依赖于偏振信息和/或组织特异性纤维结构的先验知识。本研究探索了图像处理、增强、分割和检测算法,以仅从OCT图像绘制三维胶原纤维结构。三维纤维映射、直方图分析和三维纤维束成像揭示了子宫组织样本中以前未见的纤维分组和宏观组织。我们将我们的方法应用于来自怀孕和未怀孕标本的子宫组织块的厘米级镶嵌OCT体积,揭示了一个复杂的、患者特异性的纤维胶原和肌细胞束网络。

相似文献

1
Three-dimensional collagen fiber mapping and tractography of human uterine tissue using OCT.
Biomed Opt Express. 2020 Sep 11;11(10):5518-5541. doi: 10.1364/BOE.397041. eCollection 2020 Oct 1.
2
Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography.
Biomed Opt Express. 2015 Mar 3;6(4):1090-108. doi: 10.1364/BOE.6.001090. eCollection 2015 Apr 1.
4
Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography.
J Neurosci Methods. 2008 Sep 15;174(1):82-90. doi: 10.1016/j.jneumeth.2008.07.004. Epub 2008 Jul 16.
6
Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain.
J Neurosci Methods. 2016 Sep 1;270:132-137. doi: 10.1016/j.jneumeth.2016.06.014. Epub 2016 Jun 17.
7
Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography.
Neuroimage. 2011 Oct 15;58(4):984-92. doi: 10.1016/j.neuroimage.2011.07.005. Epub 2011 Jul 12.
8
10
Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
Lasers Surg Med. 2017 Mar;49(3):258-269. doi: 10.1002/lsm.22654. Epub 2017 Mar 6.

引用本文的文献

2
Equilibrium mechanical properties of the human uterus in tension and compression.
Acta Biomater. 2025 Mar 1;194:219-232. doi: 10.1016/j.actbio.2025.01.033. Epub 2025 Jan 31.
3
Predictive coding compressive sensing optical coherence tomography hardware implementation.
Biomed Opt Express. 2024 Oct 29;15(11):6606-6618. doi: 10.1364/BOE.541685. eCollection 2024 Nov 1.
5
Equilibrium Tension and Compression Mechanical Properties of the Human Uterus.
bioRxiv. 2024 Apr 28:2024.04.25.591208. doi: 10.1101/2024.04.25.591208.
6
Cardiac endocardial left atrial substrate and lesion depth mapping using near-infrared spectroscopy.
Biomed Opt Express. 2022 Mar 2;13(4):1801-1819. doi: 10.1364/BOE.451547. eCollection 2022 Apr 1.
7
Membrane curvature and connective fiber alignment in guinea pig round window membrane.
Acta Biomater. 2021 Dec;136:343-362. doi: 10.1016/j.actbio.2021.09.036. Epub 2021 Sep 24.
8
Computational multi-directional optical coherence tomography for visualizing the microstructural directionality of the tissue.
Biomed Opt Express. 2021 Jun 7;12(7):3851-3864. doi: 10.1364/BOE.426125. eCollection 2021 Jul 1.
9
Deep Learning in Biomedical Optics.
Lasers Surg Med. 2021 Aug;53(6):748-775. doi: 10.1002/lsm.23414. Epub 2021 May 20.
10
3-D compressed sensing optical coherence tomography using predictive coding.
Biomed Opt Express. 2021 Mar 31;12(4):2531-2549. doi: 10.1364/BOE.421848. eCollection 2021 Apr 1.

本文引用的文献

1
Micro- and Ultrastructural Characterization of Age-Related Changes at the Anterior Cruciate Ligament-to-Bone Insertion.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2806-2814. doi: 10.1021/acsbiomaterials.6b00602. Epub 2016 Dec 9.
2
Fluorescence microscopy tensor imaging representations for large-scale dataset analysis.
Sci Rep. 2020 Mar 27;10(1):5632. doi: 10.1038/s41598-020-62233-2.
3
High-resolution 3D tractography of fibrous tissue based on polarization-sensitive optical coherence tomography.
Exp Biol Med (Maywood). 2020 Feb;245(4):273-281. doi: 10.1177/1535370219894332. Epub 2019 Dec 8.
4
5
Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa .
Biomed Opt Express. 2019 Mar 22;10(4):1942-1956. doi: 10.1364/BOE.10.001942. eCollection 2019 Apr 1.
6
Characterization of the collagen microstructural organization of human cervical tissue.
Reproduction. 2018 Jul;156(1):71-79. doi: 10.1530/REP-17-0763. Epub 2018 Apr 30.
7
Tissue-Specific Optical Mapping Models of Swine Atria Informed by Optical Coherence Tomography.
Biophys J. 2018 Mar 27;114(6):1477-1489. doi: 10.1016/j.bpj.2018.01.035.
8
Estimating fiber orientation distribution from diffusion MRI with spherical needlets.
Med Image Anal. 2018 May;46:57-72. doi: 10.1016/j.media.2018.01.003. Epub 2018 Feb 8.
9
Quantization of collagen organization in the stroma with a new order coefficient.
Biomed Opt Express. 2017 Dec 8;9(1):173-189. doi: 10.1364/BOE.9.000173. eCollection 2018 Jan 1.
10
Modeling the effect of collagen fibril alignment on ligament mechanical behavior.
Biomech Model Mechanobiol. 2018 Apr;17(2):543-557. doi: 10.1007/s10237-017-0977-4. Epub 2017 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验