Schlicht Bárbara, Zagnoni Michele
Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
Sci Rep. 2015 Apr 24;5:9951. doi: 10.1038/srep09951.
Basic biophysical studies and pharmacological processes can be investigated by mimicking the intracellular and extracellular environments across an artificial cell membrane construct. The ability to reproduce in vitro simplified scenarios found in live cell membranes in an automated manner has great potential for a variety of synthetic biology and compound screening applications. Here, we present a fully integrated microfluidic system for the production of artificial lipid bilayers based on the miniaturisation of droplet-interface-bilayer (DIB) techniques. The platform uses a microfluidic design that enables the controlled positioning and storage of phospholipid-stabilized water-in-oil droplets, leading successfully to the scalable and automated formation of arrays of DIBs to mimic cell membrane processes. To ensure robustness of operation, we have investigated how lipid concentration, immiscible phase flow velocities and the device geometrical parameters affect the system performance. Finally, we produced proof-of-concept data showing that diffusive transport of molecules and ions across on-chip DIBs can be studied and quantified using fluorescence-based assays.
通过模拟跨人工细胞膜构建体的细胞内和细胞外环境,可以研究基础生物物理研究和药理过程。以自动化方式在体外重现活细胞膜中发现的简化场景的能力,对于各种合成生物学和化合物筛选应用具有巨大潜力。在此,我们基于液滴界面双层(DIB)技术的小型化,展示了一种用于生产人工脂质双层的完全集成微流控系统。该平台采用微流控设计,能够对磷脂稳定的油包水液滴进行可控定位和存储,成功实现了可扩展且自动化地形成DIB阵列,以模拟细胞膜过程。为确保操作的稳健性,我们研究了脂质浓度、不混溶相流速和设备几何参数如何影响系统性能。最后,我们生成了概念验证数据,表明可以使用基于荧光的检测方法研究和量化分子和离子在芯片上DIBs上的扩散运输。