Bhattacharya K, Deb P
Department of Physics, Tezpur University (Central University), Napaam, Tezpur - 784028, India.
Dalton Trans. 2015 May 21;44(19):9221-9. doi: 10.1039/c5dt00296f.
Research on energy storage devices has created a niche owing to the ever increasing demand for alternative energy production and its efficient utilisation. Here, a novel composite of Fe3O4 nanospheres and carbon quantum dots (C-dots) have been synthesized by a two step chemical route. Hybrids of C-dots with metal oxides can contribute to charge storage capacity through the combined effect of Faradaic pseudocapacitance from the Fe3O4 and the excellent electrical properties of the C-dots, which are a promising new member of the carbon family. The structural and morphological properties of the obtained Fe3O4-C hybrid nanocomposite were extensively studied. Detailed electrochemical studies show that the high performance of the magnetically responsive Fe3O4-C hybrid nanocomposite makes it an efficient supercapacitor electrode material. The remarkable improvement in the electrochemical performance of the Fe3O4-C hybrid nanocomposite is attributed to the Faradaic pseudocapacitance of Fe3O4 coupled with the high electrical conductivity of the C-dot which aided in fast transport and ionic motion during the charge-discharge cycles. Cyclic voltammetry and galvanostatic charge-discharge studies of Fe3O4-C hybrid nanocomposite show that the nanosystem delivers a maximum specific capacitance of ∼208 F g(-1). These results demonstrate that the novel Fe3O4-C hybrid nanocomposite has great potential as a high performance electrode material for supercapacitors.
由于对替代能源生产及其高效利用的需求不断增加,储能设备的研究已形成了一个细分领域。在此,通过两步化学路线合成了一种新型的Fe3O4纳米球与碳量子点(C点)的复合材料。C点与金属氧化物的杂化物可通过Fe3O4的法拉第赝电容与C点优异的电学性能的综合作用来提高电荷存储容量,C点是碳家族中有前景的新成员。对所获得的Fe3O4-C混合纳米复合材料的结构和形态特性进行了广泛研究。详细的电化学研究表明,具有磁响应性的Fe3O4-C混合纳米复合材料的高性能使其成为一种高效的超级电容器电极材料。Fe3O4-C混合纳米复合材料电化学性能的显著改善归因于Fe3O4的法拉第赝电容与C点的高电导率,这有助于在充放电循环过程中的快速传输和离子运动。Fe3O4-C混合纳米复合材料的循环伏安法和恒电流充放电研究表明,该纳米体系的最大比电容约为208 F g(-1)。这些结果表明,新型的Fe3O4-C混合纳米复合材料作为超级电容器的高性能电极材料具有巨大潜力。