Elsaidy Amir, Majcherkiewicz Julia N, Puértolas Begoña, Salgueiriño Verónica, Nóvoa Xosé Ramón, Correa-Duarte Miguel A
CINBIO, Universidade de Vigo, 36310 Vigo, Spain.
Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain.
Nanomaterials (Basel). 2022 Aug 5;12(15):2695. doi: 10.3390/nano12152695.
Supercapacitors have been recognized as one of the more promising energy storage devices, with great potential use in portable electronics and hybrid vehicles. In this study, a composite made of clusters of iron oxide (FeO-γFeO) nanoparticles and reduced graphene oxide (rGO) has been developed through a simple one-step solvothermal synthesis method for a high-performance supercapacitor electrode. Electrochemical assessment via cyclic voltammetry, galvanostatic charge-discharge experiments, and electrochemical impedance spectroscopy (EIS) revealed that the FeO-γFeO/rGO nanocomposite showed much higher specific capacitance than either rGO or bare clusters of FeO-γFeO nanoparticles. In particular, specific capacitance values of 100 F g, 250 F g, and 528 F g were obtained for the clusters of iron oxide nanoparticles, rGO, and the hybrid nanostructure, respectively. The enhancement of the electrochemical performance of the composite material may be attributed to the synergistic interaction between the layers of graphene oxide and the clusters of iron oxide nanoparticles. The intimate contact between the two phases eliminates the interface, thus enabling facile electron transport, which is key to attaining high specific capacitance and, consequently, enhanced charge-discharge time. Performance evaluation in consecutive cycles has demonstrated that the composite material retains 110% of its initial capacitance after 3000 cycles, making it a promising candidate for supercapacitors.
超级电容器已被公认为是最具前景的储能设备之一,在便携式电子产品和混合动力汽车中具有巨大的潜在应用价值。在本研究中,通过一种简单的一步溶剂热合成方法,制备了一种由氧化铁(FeO-γFeO)纳米颗粒簇和还原氧化石墨烯(rGO)组成的复合材料,用于高性能超级电容器电极。通过循环伏安法、恒电流充放电实验和电化学阻抗谱(EIS)进行的电化学评估表明,FeO-γFeO/rGO纳米复合材料的比电容远高于rGO或裸露的FeO-γFeO纳米颗粒簇。特别是,氧化铁纳米颗粒簇、rGO和混合纳米结构的比电容值分别为100 F/g、250 F/g和528 F/g。复合材料电化学性能的提高可能归因于氧化石墨烯层与氧化铁纳米颗粒簇之间的协同相互作用。两相之间的紧密接触消除了界面,从而实现了便捷的电子传输,这是获得高比电容以及延长充放电时间的关键。连续循环的性能评估表明,该复合材料在3000次循环后仍保留其初始电容的110%,使其成为超级电容器的一个有前途的候选材料。