Suppr超能文献

提高下一代治疗药物从高通量筛选文库中的递送效率。

Increasing the delivery of next generation therapeutics from high throughput screening libraries.

作者信息

Wigglesworth Mark J, Murray David C, Blackett Carolyn J, Kossenjans Michael, Nissink J Willem M

机构信息

Global High Throughput Screening, Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.

Global High Throughput Screening, Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.

出版信息

Curr Opin Chem Biol. 2015 Jun;26:104-10. doi: 10.1016/j.cbpa.2015.04.006. Epub 2015 Apr 20.

Abstract

The pharmaceutical industry has historically relied on high throughput screening as a cornerstone to identify chemical equity for drug discovery projects. However, with pharmaceutical companies moving through a phase of diminished returns and alternative hit identification strategies proving successful, it is more important than ever to understand how this approach can be used more effectively to increase the delivery of next generation therapeutics from high throughput screening libraries. There is a wide literature that describes HTS and fragment based screening approaches which offer clear direction on the process for these two distinct activities. However, few people have considered how best to identify medium to low molecular weight compounds from large diversity screening sets and increase downstream success.

摘要

制药行业历来依赖高通量筛选作为药物发现项目中识别化学优势的基石。然而,随着制药公司进入回报递减阶段,且替代的命中物识别策略已证明取得成功,比以往任何时候都更重要的是要了解如何更有效地利用这种方法,以增加从高通量筛选文库中交付下一代治疗药物。有大量文献描述了高通量筛选和基于片段的筛选方法,这些方法为这两种不同活动的过程提供了明确的指导。然而,很少有人考虑过如何从大量多样的筛选集中最佳地识别中低分子量化合物,并提高下游成功率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验