Chaves R, Kueng R, Brask J B, Gross D
Institute for Physics, University of Freiburg, Rheinstrasse 10, D-79104 Freiburg, Germany.
Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland.
Phys Rev Lett. 2015 Apr 10;114(14):140403. doi: 10.1103/PhysRevLett.114.140403. Epub 2015 Apr 7.
Bell's theorem shows that quantum mechanical correlations can violate the constraints that the causal structure of certain experiments impose on any classical explanation. It is thus natural to ask to which degree the causal assumptions-e.g., locality or measurement independence-have to be relaxed in order to allow for a classical description of such experiments. Here we develop a conceptual and computational framework for treating this problem. We employ the language of Bayesian networks to systematically construct alternative causal structures and bound the degree of relaxation using quantitative measures that originate from the mathematical theory of causality. The main technical insight is that the resulting problems can often be expressed as computationally tractable linear programs. We demonstrate the versatility of the framework by applying it to a variety of scenarios, ranging from relaxations of the measurement independence, locality, and bilocality assumptions, to a novel causal interpretation of Clauser-Horne-Shimony-Holt inequality violations.
贝尔定理表明,量子力学相关性能够违背某些实验的因果结构对任何经典解释所施加的限制。因此自然而然会问,为了能够对这类实验进行经典描述,因果假设(例如局域性或测量独立性)需要放宽到何种程度。在此,我们开发了一个用于处理该问题的概念和计算框架。我们运用贝叶斯网络的语言来系统地构建替代因果结构,并使用源自因果关系数学理论的定量度量来界定放宽程度。主要的技术见解是,由此产生的问题通常可以表述为计算上易于处理的线性规划。我们通过将其应用于各种情形来展示该框架的通用性,这些情形包括对测量独立性、局域性和双局域性假设的放宽,以及对克劳泽 - 霍恩 - 希莫尼 - 霍尔特不等式违背的一种新颖因果解释。