Wang Jiajing, Hmadcha Abdelkrim, Zakarian Vaagn, Song Fei, Loeb Jeffrey A
The Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
The Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Stem Cells, CABIMER-Fundación Progreso y Salud, Sevilla 41092, Spain.
Mol Cell Neurosci. 2015 Sep;68:73-81. doi: 10.1016/j.mcn.2015.04.003. Epub 2015 Apr 22.
The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions.
神经调节蛋白(NRGs)是一类经过可变剪接的因子家族,在神经系统发育和疾病中发挥着重要作用。在运动神经元中,NRG1的表达受活性和神经营养因子调控,然而,对于控制异构体特异性转录的因素却知之甚少。在此我们表明,鸡胚中NRG1在已延伸轴突的运动神经元中的表达增加,并且在运动轴突长出之前进行肢芽切除会阻止这种诱导,这表明发育中的肢体具有营养作用。一致地,通过重新添加神经营养因子BDNF和GDNF可以挽救肢芽切除后的NRG1诱导。从机制上讲,BDNF在大鼠胚胎腹侧脊髓培养物中诱导I型和III型NRG1 mRNA快速且短暂地增加,在4小时达到峰值。阻断MAPK或PI3K信号传导或用放线菌素D阻断转录会阻断BDNF诱导的NRG1基因诱导。BDNF对mRNA降解没有影响,这表明转录激活而非信息稳定性很重要。此外,BDNF激活了一个报告基因构建体,该构建体包括I型NRG1起始位点上游700bp的区域。I型NRG1 mRNA转录也需要蛋白质合成,因为环己酰亚胺会产生I型而非III型NRG1 mRNA的超诱导,这可能是通过一种涉及MAPK和PI3K持续激活的机制实现的。这些结果揭示了存在高度敏感的瞬时转录调控机制,该机制根据细胞外和细胞内信号级联反应,并由神经营养因子和轴突 - 靶标相互作用介导,差异性地调节NRG1异构体的表达。