Suppr超能文献

黄酮类3',5'-羟化酶的多重进化

Multiple evolution of flavonoid 3',5'-hydroxylase.

作者信息

Seitz Christian, Ameres Stefanie, Schlangen Karin, Forkmann Gert, Halbwirth Heidi

机构信息

Chair of Floriculture Crops and Horticultural Plant Breeding, Technical University Munich, Am Hochanger 4, 85350, Freising, Germany.

出版信息

Planta. 2015 Sep;242(3):561-73. doi: 10.1007/s00425-015-2293-5. Epub 2015 Apr 28.

Abstract

Multiple F3'5'H evolution from F3'H has occurred in dicotyledonous plants. Efficient pollinator attraction is probably the driving force behind, as this allowed for the synthesis of delphinidin-based blue anthocyanins. The cytochrome P450-dependent monooxygenases flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) hydroxylate the B-ring of flavonoids at the 3'- and 3'- and 5'-position, respectively. Their divergence took place early in plant evolution. While F3'H is ubiquitously present in higher plants, the distribution of F3'5'H is scattered. Here, we report that F3'5'H has repeatedly evolved from F3'H precursors at least four times in dicotyledonous plants: In the Asteraceae, we identified F3'5'Hs specific for the subfamilies Cichorioideae and Asteroideae, and additionally an F3'5'H that seems to be specific for the genus Echinops of the subfamily Carduoideae; moreover, characterisation of a sequence from Billardiera heterophylla (formerly Sollya heterophylla) (Pittosporaceae) showed that the independent evolution of an F3'5'H has occurred at least once also in another family. The evolution of F3'5'H from an F3'H precursor represents a gain of enzymatic function, probably triggered by an amino acid change at one position of substrate recognition site 6. The gain of F3'5'H activity allows for the synthesis of delphinidin-based anthocyanins which usually provide the basis for lilac to blue flower colours. Therefore, the need for an efficient pollinator attraction is probably the driving force behind the multiple F3'5'H evolution.

摘要

在双子叶植物中,已发生从黄酮类3'-羟化酶(F3'H)到多种黄酮类3'5'-羟化酶(F3'5'H)的进化。高效吸引传粉者可能是其背后的驱动力,因为这有利于基于飞燕草色素的蓝色花青素的合成。细胞色素P450依赖性单加氧酶黄酮类3'-羟化酶(F3'H)和黄酮类3',5'-羟化酶(F3'5'H)分别使黄酮类化合物的B环在3'-位和3'-及5'-位发生羟基化反应。它们的分化发生在植物进化的早期。虽然F3'H普遍存在于高等植物中,但F3'5'H的分布却很分散。在此,我们报告,在双子叶植物中,F3'5'H已至少四次从F3'H前体反复进化而来:在菊科中,我们鉴定出菊苣亚科和紫菀亚科特有的F3'5'H,此外还有一种似乎是刺苞亚科蓝刺头属特有的F3'5'H;此外,对异叶比尔基豆(原异叶索利亚豆)(海桐花科)一个序列的特征分析表明,在另一个科中也至少发生过一次F3'5'H的独立进化。从F3'H前体进化出F3'5'H代表了一种酶功能的获得,可能是由底物识别位点6的一个位置上的氨基酸变化引发的。F3'5'H活性的获得有利于基于飞燕草色素的花青素的合成,这些花青素通常是丁香色到蓝色花朵颜色的基础。因此,高效吸引传粉者的需求可能是多次F3'5'H进化背后的驱动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验