Institute for Plant Science, Suntory Business Expert Ltd., Shimamoto, Osaka 618-8503, Japan.
Philos Trans R Soc Lond B Biol Sci. 2013 Jan 6;368(1612):20120432. doi: 10.1098/rstb.2012.0432. Print 2013 Feb 19.
Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.
细胞色素 P450 在类黄酮及其有色类化合物花色苷的生物合成中起着重要作用,花色苷是主要的花卉色素。花色苷的 B 环上的羟基数量(花色苷的发色团和前体)影响花色苷的颜色,羟基越多,颜色越蓝。羟基化模式由两种细胞色素 P450,黄酮 3'-羟化酶(F3'H)和黄酮 3',5'-羟化酶(F3'5'H)决定,因此它们在花色的决定中起着至关重要的作用。F3'H 和 F3'5'H 主要分别属于 CYP75B 和 CYP75A,除了菊科植物的 F3'5'H 是由 CYP75B 的基因复制和新功能化衍生而来的。玫瑰和康乃馨由于缺乏 F3'5'H,因此缺乏基于飞燕草素的 B 环三羟基化花色苷,因此没有蓝色/紫色的花朵颜色。通过表达 F3'5'H 编码区成功地将花色苷生物合成途径重新定向到飞燕草素,从而使康乃馨和玫瑰产生了新的蓝色调,并已商业化。在产生飞燕草素的植物中抑制 F3'5'H 和 F3'H,减少花色苷 B 环上的羟基数量,导致产生基于天竺葵素的单羟基化花色苷,花色向橙色/红色转变。通过额外表达二氢黄酮醇 4-还原酶来增强天竺葵素的生物合成,该酶可以利用单羟基化二氢山奈酚(天竺葵素的前体)。类黄酮合酶 II(FNSII)催化从黄烷酮到类黄酮的类黄酮生物合成也是一种 P450(CYP93B),并有助于花色,因为类黄酮作为花色苷的共色素,可以使花色变蓝和变暗。然而,由于花色苷的减少,转基因植物表达 FNSII 基因会导致花朵颜色变淡,因为黄烷酮是花色苷和类黄酮的前体。