Suppr超能文献

用于识别与紧急主题相关的突发局部区域的实时分析应用程序。

Real-time analysis application for identifying bursty local areas related to emergency topics.

作者信息

Sakai Tatsuhiro, Tamura Keiichi

机构信息

Graduate School of Information Sciences, Hiroshima City University, 3-4-1, Ozuka-Higashi, Asa-Minami-Ku, 731-3194 Hiroshima Japan.

出版信息

Springerplus. 2015 Apr 3;4:162. doi: 10.1186/s40064-015-0817-x. eCollection 2015.

Abstract

Since social media started getting more attention from users on the Internet, social media has been one of the most important information source in the world. Especially, with the increasing popularity of social media, data posted on social media sites are rapidly becoming collective intelligence, which is a term used to refer to new media that is displacing traditional media. In this paper, we focus on geotagged tweets on the Twitter site. These geotagged tweets are referred to as georeferenced documents because they include not only a short text message, but also the documents' posting time and location. Many researchers have been tackling the development of new data mining techniques for georeferenced documents to identify and analyze emergency topics, such as natural disasters, weather, diseases, and other incidents. In particular, the utilization of geotagged tweets to identify and analyze natural disasters has received much attention from administrative agencies recently because some case studies have achieved compelling results. In this paper, we propose a novel real-time analysis application for identifying bursty local areas related to emergency topics. The aim of our new application is to provide new platforms that can identify and analyze the localities of emergency topics. The proposed application is composed of three core computational intelligence techniques: the Naive Bayes classifier technique, the spatiotemporal clustering technique, and the burst detection technique. Moreover, we have implemented two types of application interface: a Web application interface and an android application interface. To evaluate the proposed application, we have implemented a real-time weather observation system embedded the proposed application. we used actual crawling geotagged tweets posted on the Twitter site. The weather observation system successfully detected bursty local areas related to observed emergency weather topics.

摘要

自从社交媒体开始受到互联网用户更多关注以来,社交媒体一直是全球最重要的信息来源之一。特别是,随着社交媒体的日益普及,社交媒体网站上发布的数据正迅速成为集体智慧,这是一个用于指代正在取代传统媒体的新媒体的术语。在本文中,我们聚焦于推特网站上带有地理标记的推文。这些带有地理标记的推文被称为地理参考文档,因为它们不仅包含简短的文本信息,还包括文档的发布时间和地点。许多研究人员一直在致力于开发用于地理参考文档的新数据挖掘技术,以识别和分析诸如自然灾害、天气、疾病及其他事件等紧急主题。特别是,利用带有地理标记的推文来识别和分析自然灾害最近受到了行政机构的广泛关注,因为一些案例研究取得了令人瞩目的成果。在本文中,我们提出了一种用于识别与紧急主题相关的突发局部地区的新颖实时分析应用程序。我们新应用程序的目标是提供能够识别和分析紧急主题发生地点的新平台。所提出的应用程序由三种核心计算智能技术组成:朴素贝叶斯分类器技术、时空聚类技术和突发检测技术。此外,我们还实现了两种类型的应用程序接口:一个网络应用程序接口和一个安卓应用程序接口。为了评估所提出的应用程序,我们实现了一个嵌入该应用程序的实时天气观测系统。我们使用了在推特网站上实际抓取的带有地理标记的推文。该天气观测系统成功检测到了与观测到的紧急天气主题相关的突发局部地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c89/4402682/a1d41f49d962/40064_2015_817_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验