Suppr超能文献

利用 Twitter 数据监测自然灾害社会动态:基于词嵌入和核密度估计的递归神经网络方法。

Using Twitter Data to Monitor Natural Disaster Social Dynamics: A Recurrent Neural Network Approach with Word Embeddings and Kernel Density Estimation.

机构信息

Instituto Politecnico Nacional, ESIME Culhuacan, Mexico City 04440, Mexico.

Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.

出版信息

Sensors (Basel). 2019 Apr 11;19(7):1746. doi: 10.3390/s19071746.

Abstract

In recent years, Online Social Networks (OSNs) have received a great deal of attention for their potential use in the spatial and temporal modeling of events owing to the information that can be extracted from these platforms. Within this context, one of the most latent applications is the monitoring of natural disasters. Vital information posted by OSN users can contribute to relief efforts during and after a catastrophe. Although it is possible to retrieve data from OSNs using embedded geographic information provided by GPS systems, this feature is disabled by default in most cases. An alternative solution is to geoparse specific locations using language models based on Named Entity Recognition (NER) techniques. In this work, a sensor that uses Twitter is proposed to monitor natural disasters. The approach is intended to sense data by detecting toponyms (named places written within the text) in tweets with event-related information, e.g., a collapsed building on a specific avenue or the location at which a person was last seen. The proposed approach is carried out by transforming tokenized tweets into word embeddings: a rich linguistic and contextual vector representation of textual corpora. Pre-labeled word embeddings are employed to train a Recurrent Neural Network variant, known as a Bidirectional Long Short-Term Memory (biLSTM) network, that is capable of dealing with sequential data by analyzing information in both directions of a word (past and future entries). Moreover, a Conditional Random Field (CRF) output layer, which aims to maximize the transition from one NER tag to another, is used to increase the classification accuracy. The resulting labeled words are joined to coherently form a toponym, which is geocoded and scored by a Kernel Density Estimation function. At the end of the process, the scored data are presented graphically to depict areas in which the majority of tweets reporting topics related to a natural disaster are concentrated. A case study on Mexico's 2017 Earthquake is presented, and the data extracted during and after the event are reported.

摘要

近年来,由于可以从这些平台中提取信息,在线社交网络 (OSN) 因其在事件的时空建模方面的潜在应用而受到广泛关注。在这种情况下,最具潜力的应用之一是监测自然灾害。OSN 用户发布的重要信息可以为灾难期间和之后的救援工作做出贡献。虽然可以使用 GPS 系统提供的嵌入式地理信息从 OSN 中检索数据,但在大多数情况下,此功能默认处于禁用状态。另一种解决方案是使用基于命名实体识别 (NER) 技术的语言模型对特定位置进行地理解析。在这项工作中,提出了一种使用 Twitter 的传感器来监测自然灾害。该方法旨在通过检测与事件相关的信息(例如特定大道上倒塌的建筑物或最后一次看到某人的位置)在带有事件相关信息的推文中检测地名(文本中写的命名地点)来感知数据。所提出的方法是通过将标记的推文转换为词嵌入来执行的:这是一种对文本语料库进行丰富的语言和上下文表示的向量表示。使用预标记的词嵌入来训练变体递归神经网络,称为双向长短时记忆 (biLSTM) 网络,该网络能够通过分析词的两个方向(过去和未来的条目)的信息来处理顺序数据。此外,使用条件随机场 (CRF) 输出层来最大化从一个 NER 标签到另一个标签的转换,以提高分类准确性。将生成的标记词连接起来,以形成一个连贯的地名,然后由核密度估计函数对其进行地理编码和评分。在处理结束时,以图形方式呈现评分数据,以描绘集中报告与自然灾害相关主题的推文的大部分区域。提出了一个关于墨西哥 2017 年地震的案例研究,并报告了在事件期间和之后提取的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b112/6484392/f0d5b0fb76d9/sensors-19-01746-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验