Suppr超能文献

通过对选定区域进行靶向测序来鉴定全人类基因组的拷贝数变异(CNV)、杂合性缺失(LOH)和单亲二倍体(UPD)。

Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

作者信息

Li Wei, Xia Yingying, Wang Chongzhi, Tang Y Tom, Guo Wenying, Li Jinliang, Zhao Xia, Sun Yepeng, Hu Juan, Zhen Hefu, Zhang Xiandong, Chen Chao, Shi Yujian, Li Lin, Cao Hongzhi, Du Hongli, Li Jian

机构信息

BGI-Shenzhen, Shenzhen, China.

BGI-Shenzhen, Shenzhen, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

出版信息

PLoS One. 2015 Apr 28;10(4):e0123081. doi: 10.1371/journal.pone.0123081. eCollection 2014.

Abstract

Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

摘要

拷贝数变异(CNV)、杂合性缺失(LOH)和单亲二体性(UPD)是导致许多常见遗传性疾病、癌症和其他复杂疾病的大型基因组畸变。一种用于识别这些畸变的综合工具对于理解疾病和设计临床干预措施至关重要。先前基于全基因组测序(WGS)的发现方法需要在全基因组规模上有非常高的覆盖深度,并且在成本方面效率低下。另一种方法,全外显子组测序(WEGS),仅限于发现外显子内的变异。因此,我们缺乏使用下一代测序技术在全基因组规模上检测基因组畸变的有效方法。在此,我们提出一种通过选择性测序基因组的一小部分(称为选定目标区域,SeTRs)来识别人类基因组全基因组范围内的CNV、LOH和UPD的方法。在我们的实验中,SeTRs的覆盖度为99.73%至99.95%,且具有足够的深度。我们开发的生物信息学流程能够以高置信度调用全基因组范围内的CNV,从15个个体样本中揭示出8个可信的LOH事件和3个大于5M的UPD事件。我们证明,可以使用具有成本效益的SeTRs测序方法检测全基因组范围内的CNV、LOH和UPD,并且仅使用样本分组技术就可以识别LOH和UPD,而无需使用匹配样本或家族信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8ef/4412667/3c42456d8e82/pone.0123081.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验