Suppr超能文献

双维度约简揭示了昆虫飞行控制肌肉协同中运动特征的独立编码。

Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

作者信息

Sponberg Simon, Daniel Thomas L, Fairhall Adrienne L

机构信息

Department of Biology, Univ. of Washington, Seattle, Washington, United States of America; Department of Physiology & Biophysics, Univ. of Washington, Seattle, Washington, United States of America.

Department of Biology, Univ. of Washington, Seattle, Washington, United States of America; Institute for Neuroengineering, Univ. of Washington, Seattle, Washington, United States of America; Program in Neuroscience, Univ. of Washington, Seattle, Washington, United States of America.

出版信息

PLoS Comput Biol. 2015 Apr 28;11(4):e1004168. doi: 10.1371/journal.pcbi.1004168. eCollection 2015 Apr.

Abstract

What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional sensory or motor transformations.

摘要

由不断变化的运动指令编码的运动有哪些特征?运动指令是独立编码运动,还是可以用一组简化的信号(即协同作用)来表示?运动编码带来了计算和实践上的挑战,因为许多肌肉通常驱动运动,而且通常无法同时记录所有运动指令的电生理信号。此外,在单个运动周期(一步或一次翅膀冲程)中,即使只有少数离散信号激活肌肉,运动的变化也可能具有高维度。在这里,我们应用偏最小二乘法(PLS),根据运动信号和运动的交叉协方差来提取运动的编码特征。PLS同时分解这两个数据集,只识别与感兴趣的特定肌肉相关的运动变化。我们用这种方法来探究昆虫烟草天蛾主要的向下飞行肌肉在偏航转弯时是如何编码扭矩的。我们在接受宽视野视觉刺激的系留飞行蛾中同时记录肌肉活动和转弯扭矩。我们研究这一对肌肉是否作为一种肌肉协同作用(活动的单一线性组合)发挥作用,这与其产生左右功率差异的假设功能一致。或者,每块肌肉可能单独编码运动变化。我们表明,PLS特征分析有效地降低了翅膀冲程内扭矩变化的维度。起初,当我们只考虑它们翅膀冲程平均扭矩时,这两块肌肉似乎表现为一种协同作用。然而,当我们考虑PLS特征时,肌肉显示出扭矩的独立编码。利用这些特征,我们可以可预测地重建与肌肉激活变化相对应的扭矩变化。基于PLS的特征分析提供了一种通用的双向降维方法,揭示了高维度感觉或运动转换中的编码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ef/4412410/3a146580fb64/pcbi.1004168.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验