Suppr超能文献

翼拍内阻尼:烟青虫连续自由飞行偏航转弯的动力学。

Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta.

机构信息

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Biol Lett. 2010 Jun 23;6(3):422-5. doi: 10.1098/rsbl.2010.0083. Epub 2010 Feb 24.

Abstract

Free-flight body dynamics and wing kinematics were collected from recordings of continuous, low-speed, multi-wingbeat yaw turns in hawkmoths (Manduca sexta) using stereo videography. These data were used to examine the effects of rotational damping arising from interactions between the body rotation and flapping motion (flapping counter-torque, FCT) on continuous turning. The moths were found to accelerate during downstroke, then decelerate during upstroke by an amount consistent with FCT damping. Wing kinematics related to turning were then analysed in a simulation of hawkmoth flight; results were consistent with the observed acceleration-deceleration pattern. However, an alternative wing kinematic which produced more continuous and less damped accelerations was found in the simulation. These findings demonstrate that (i) FCT damping is detectable in the dynamics of continuously turning animals and (ii) FCT-reducing kinematics do exist but were not employed by turning moths, possibly because within-wingbeat damping simplifies control of turning by allowing control systems to target angular velocity rather than acceleration.

摘要

使用立体摄像术,从 Hawk 蛾(Manduca sexta)连续低速多拍扑翼偏航转弯的记录中收集自由飞行的身体动力学和翅膀运动学数据。这些数据用于研究由于身体旋转和拍打运动之间的相互作用(拍打反扭矩,FCT)引起的旋转阻尼对连续转弯的影响。发现飞蛾在下降冲程期间加速,然后在上冲程期间减速,减速量与 FCT 阻尼一致。然后在 Hawk 蛾飞行的模拟中分析与转弯相关的翅膀运动学;结果与观察到的加速-减速模式一致。然而,在模拟中发现了一种替代的翅膀运动学,它产生了更连续和更少阻尼的加速度。这些发现表明:(i)FCT 阻尼在连续转弯动物的动力学中是可检测的;(ii)确实存在 FCT 减少的运动学,但转弯的飞蛾并未采用,这可能是因为在翼拍内阻尼通过允许控制系统以角速度而不是加速度为目标,从而简化了转弯的控制。

相似文献

1
Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta.
Biol Lett. 2010 Jun 23;6(3):422-5. doi: 10.1098/rsbl.2010.0083. Epub 2010 Feb 24.
2
Neuromuscular control of free-flight yaw turns in the hawkmoth Manduca sexta.
J Exp Biol. 2012 May 15;215(Pt 10):1766-74. doi: 10.1242/jeb.067355.
3
A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.
Bioinspir Biomim. 2014 Mar;9(1):016011. doi: 10.1088/1748-3182/9/1/016011. Epub 2014 Jan 22.
4
Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.
Bioinspir Biomim. 2015 Sep 28;10(5):056012. doi: 10.1088/1748-3190/10/5/056012.
5
A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
J R Soc Interface. 2015 Mar 6;12(104):20141088. doi: 10.1098/rsif.2014.1088.
6
Hawkmoths regulate flight torques with their abdomen for yaw control.
J Exp Biol. 2023 May 1;226(9). doi: 10.1242/jeb.245063. Epub 2023 May 11.
8
Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth .
J Exp Biol. 2017 Oct 15;220(Pt 20):3649-3656. doi: 10.1242/jeb.153494. Epub 2017 Aug 9.
10
Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
Bioinspir Biomim. 2017 Jun 8;12(4):046001. doi: 10.1088/1748-3190/aa714e.

引用本文的文献

1
Downstroke and upstroke conflict during banked turns in butterflies.
J R Soc Interface. 2021 Dec;18(185):20210779. doi: 10.1098/rsif.2021.0779. Epub 2021 Dec 1.
2
Wing structure and neural encoding jointly determine sensing strategies in insect flight.
PLoS Comput Biol. 2021 Aug 11;17(8):e1009195. doi: 10.1371/journal.pcbi.1009195. eCollection 2021 Aug.
5
Direct lateral maneuvers in hawkmoths.
Biol Open. 2016 Jan 6;5(1):72-82. doi: 10.1242/bio.012922.
6
Vision-based flight control in the hawkmoth Hyles lineata.
J R Soc Interface. 2013 Dec 11;11(91):20130921. doi: 10.1098/rsif.2013.0921. Print 2014 Feb 6.
7
Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability.
Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18798-803. doi: 10.1073/pnas.1309300110. Epub 2013 Nov 4.
8
The influence of sensory delay on the yaw dynamics of a flapping insect.
J R Soc Interface. 2012 Jul 7;9(72):1685-96. doi: 10.1098/rsif.2011.0699. Epub 2011 Dec 21.
9
A moving topic: control and dynamics of animal locomotion.
Biol Lett. 2010 Jun 23;6(3):387-8. doi: 10.1098/rsbl.2010.0294. Epub 2010 Apr 21.

本文引用的文献

1
Fruit flies modulate passive wing pitching to generate in-flight turns.
Phys Rev Lett. 2010 Apr 9;104(14):148101. doi: 10.1103/PhysRevLett.104.148101. Epub 2010 Apr 5.
2
Wingbeat time and the scaling of passive rotational damping in flapping flight.
Science. 2009 Apr 10;324(5924):252-5. doi: 10.1126/science.1168431.
3
Visual control of flight speed in Drosophila melanogaster.
J Exp Biol. 2009 Apr;212(Pt 8):1120-30. doi: 10.1242/jeb.020768.
4
Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems.
Bioinspir Biomim. 2008 Sep;3(3):034001. doi: 10.1088/1748-3182/3/3/034001. Epub 2008 Jul 1.
5
Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli.
J Exp Biol. 2008 Feb;211(Pt 3):423-32. doi: 10.1242/jeb.011791.
6
The critical role of locomotion mechanics in decoding sensory systems.
J Neurosci. 2007 Jan 31;27(5):1123-8. doi: 10.1523/JNEUROSCI.4198-06.2007.
7
Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering.
J Exp Biol. 2006 Aug;209(Pt 16):3114-30. doi: 10.1242/jeb.02363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验