Lv Sulian, Jiang Ping, Nie Lingling, Chen Xianyang, Tai Fang, Wang Duoliya, Fan Pengxiang, Feng Juanjuan, Bao Hexigeduleng, Wang Jinhui, Li Yinxin
Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Plant Cell Environ. 2015 Nov;38(11):2433-49. doi: 10.1111/pce.12557. Epub 2015 Jun 11.
High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H(+) -PPase is involved in salt-stimulated NO3 (-) uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H(+) -PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K(+) /Na(+) ratio in leaves and exhibited increased NO3 (-) uptake, inorganic pyrophosphate-dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up-regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up-regulation of H(+) -PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland.
土壤中的高盐度和氮(N)缺乏是限制作物生产力的两个关键因素,并且它们通常同时出现。在这里,我们首次发现H(+) -焦磷酸酶参与盐生植物欧洲海蓬子中盐刺激的NO3 (-) 吸收。然后,对来自欧洲海蓬子的两个编码H(+) -焦磷酸酶的基因(命名为SeVP1和SeVP2)进行了表征。SeVP1和SeVP2的表达受盐胁迫和氮饥饿诱导。当高盐和低氮同时出现时,SeVP1或SeVP2转基因拟南芥和小麦植株的表现均优于野生型(WTs)。转基因拟南芥植株在这种双重胁迫下,叶片中维持较高的K(+) /Na(+) 比值,并表现出NO3 (-) 吸收增加、无机焦磷酸依赖的液泡硝酸盐外流和同化能力增强。此外,与野生型相比,它们的地上部和根部有更多的可溶性糖,地上部淀粉积累更少。这些表现可以通过转基因植物中离子、硝酸盐和糖转运蛋白基因的上调表达来解释。综上所述,我们的结果表明,H(+) -焦磷酸酶的上调有利于光合产物向根部的运输,这可以促进根系生长并整合植物中的氮和碳代谢。这项工作为提高受土壤盐渍化加剧和农田面积缩减挑战的作物产量提供了潜在策略。