Suppr超能文献

利用智能手机采集的气管声音的毯式分形维数估计潮气量。

Tidal volume estimation using the blanket fractal dimension of the tracheal sounds acquired by smartphone.

作者信息

Reljin Natasa, Reyes Bersain A, Chon Ki H

机构信息

Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, CT 06269, USA.

出版信息

Sensors (Basel). 2015 Apr 27;15(5):9773-90. doi: 10.3390/s150509773.

Abstract

In this paper, we propose the use of blanket fractal dimension (BFD) to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE) is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE). The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained). The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation) was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days.

摘要

在本文中,我们提出使用毯状分形维数(BFD)从智能手机采集的气管声音中估计潮气量。我们使用三星Galaxy S4智能手机从五名(N = 5)健康志愿者那里收集了气管声音。每位志愿者进行了六次实验;首先获得线性和指数拟合模型,然后将新数据拟合到现有模型上。因此,记录总数为30次。将估计的体积与通过Respitrace系统获得的真实值进行比较,Respitrace系统被视为参考。由于香农熵(SE)在气管声音分析中经常被用作一个特征,我们也通过使用SE从相同的声音中估计潮气量。使用BFD和SE方法对所执行估计的评估通过归一化均方根误差(NRMSE)进行量化。结果表明,BFD的表现优于SE(获得的NRMSE至少小两倍)。使用BFD和指数模型获得的最小NRMSE误差为15.877%±9.246%(平均值±标准差)。此外,研究表明在实验第一天计算的拟合曲线至少在接下来的五天内可以成功使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55f/4481932/4cbfc1ce25c3/sensors-15-09773-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验