Suppr超能文献

评估多通道肺音参数化在间质性肺疾病患者的两类分类中的应用。

Assessment of multichannel lung sounds parameterization for two-class classification in interstitial lung disease patients.

机构信息

Electrical Engineering Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico.

出版信息

Comput Biol Med. 2011 Jul;41(7):473-82. doi: 10.1016/j.compbiomed.2011.04.009. Epub 2011 May 14.

Abstract

This work deals with the assessment of different parameterization techniques for lung sounds (LS) acquired on the whole posterior thoracic surface for normal versus abnormal LS classification. Besides the conventional technique of power spectral density (PSD), the eigenvalues of the covariance matrix and both the univariate autoregressive (UAR) and the multivariate autoregressive models (MAR) were applied for constructing feature vectors as input to a supervised neural network (SNN). The results showed the effectiveness of the UAR modeling for multichannel LS parameterization, using new data, with classification accuracy of 75% and 93% for healthy subjects and patients, respectively.

摘要

本工作评估了在整个后胸表面获取的用于正常与异常肺音(LS)分类的不同参数化技术。除了传统的功率谱密度(PSD)技术外,协方差矩阵的特征值以及单变量自回归(UAR)和多变量自回归模型(MAR)都被应用于构建特征向量作为监督神经网络(SNN)的输入。结果表明,UAR 模型在多通道 LS 参数化方面的有效性,使用新数据,健康受试者和患者的分类准确率分别为 75%和 93%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验