He Chun, Zhou Xiaoping, Gong Yibin, Sun Zhenjie, Cao Yang, Shu Dong, Tian Shuanghong
J Nanosci Nanotechnol. 2014 Sep;14(9):7255-60. doi: 10.1166/jnn.2014.8932.
A nanostructure S-doping manganese oxide (MnO(x)S(y)) amorphous powder was prepared by a homogeneous coprecipitation method for supercapacitor application. The structure and surface morphology of the as-prepared MnO(x)S(y) powder were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis and X-ray photoelectron spectroscopy (XPS). The as-prepared nanostructure S-doping manganese oxide powder was confirmed with a chemical composition of MnO1.26S0.23 by elemental analysis, in which the average oxidation state of manganese is about 3.1. The supercapacitive behavior of the as-prepared MnO1.26S0.23 was studied by means of cyclic voltammetry (CV) and constant current charge-discharge cycling (CD) experiments in 1 mol L(-1) Na2SO4 electrolyte. A maximum specific capacitance of 181 F g(-1) was obtained for MnO1.26S0.23. Furthermore, the specific capacitance remained 97.3% of the original value after 500 cycles. The superior capacitive behavior and better cycling stability indicate that the amorphous nanostructure MnO(x)S(y) maybe a promising electrode material for electrochemical capacitors.
采用均匀共沉淀法制备了一种用于超级电容器的纳米结构硫掺杂氧化锰(MnO(x)S(y))非晶粉末。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、元素分析和X射线光电子能谱(XPS)对制备的MnO(x)S(y)粉末的结构和表面形貌进行了表征。通过元素分析确定了所制备的纳米结构硫掺杂氧化锰粉末的化学组成为MnO1.26S0.23,其中锰的平均氧化态约为3.1。在1 mol L(-1) Na2SO4电解液中,通过循环伏安法(CV)和恒流充放电循环(CD)实验研究了所制备的MnO1.26S0.23的超级电容行为。MnO1.26S0.23的最大比电容为181 F g(-1)。此外,经过500次循环后,比电容仍保持为初始值的97.3%。优异的电容行为和更好的循环稳定性表明,非晶纳米结构MnO(x)S(y)可能是一种有前途的电化学电容器电极材料。