De La Fuente Rabindranath, Baumann Claudia, Viveiros Maria M
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA.
Development. 2015 May 15;142(10):1806-17. doi: 10.1242/dev.118927. Epub 2015 Apr 29.
A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition.
相当比例的人类卵裂期胚胎表现出染色体不稳定性(CIN)。值得注意的是,迄今为止,尚未有实验模型被描述用于确定复杂染色体重排的起源和机制。在此,我们研究了缺乏染色质重塑蛋白ATRX的小鼠胚胎,以确定响应CIN而激活的细胞机制。我们证明,ATRX是母体基因组中主要卫星转录本沉默所必需的,在向第一次有丝分裂过渡期间,它赋予着丝粒周围异染色质表观遗传不对称性。这个阶段的特征还包括由亲代基因组之间CENP-C蛋白差异建立的显著的动粒大小不对称性。ATRX的缺失导致着丝粒有丝分裂重组增加、姐妹染色单体交换和双链DNA断裂的频率升高,表明有丝分裂重组断点的形成。缺乏ATRX的胚胎中,极光激酶B、着丝粒黏连蛋白ESCO2、DNMT1、泛素连接酶(DZIP3)和组蛋白甲基转移酶(EHMT1)的转录本增加了两倍。因此,ATRX的缺失激活了一条响应染色体断裂而整合表观遗传修饰和DNA修复的途径。这些结果揭示了卵裂期胚胎对CIN的细胞反应,并揭示了一种着丝粒裂变诱导大规模染色体重排形成的机制。我们的结果对于确定导致先天性出生缺陷和早期妊娠丢失的CIN的表观遗传起源以及卵母细胞向胚胎转变所涉及的机制具有重要意义。