Medan Violeta, Berón De Astrada Martín, Scarano Florencia, Tomsic Daniel
Instituto de Fisiología, Biología Molecular y Neurociencias-Concejo Nacional de Investigaciones Científicas y Tecnológicas, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
Instituto de Fisiología, Biología Molecular y Neurociencias-Concejo Nacional de Investigaciones Científicas y Tecnológicas, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
J Neurosci. 2015 Apr 29;35(17):6654-66. doi: 10.1523/JNEUROSCI.4667-14.2015.
Highly active insects and crabs depend on visual motion information for detecting and tracking mates, prey, or predators, for which they require directional control systems containing internal maps of visual space. A neural map formed by large, motion-sensitive neurons implicated in processing panoramic flow is known to exist in an optic ganglion of the fly. However, an equivalent map for processing spatial positions of single objects has not been hitherto identified in any arthropod. Crabs can escape directly away from a visual threat wherever the stimulus is located in the 360° field of view. When tested in a walking simulator, the crab Neohelice granulata immediately adjusts its running direction after changes in the position of the visual danger stimulus smaller than 1°. Combining mass and single-cell staining with in vivo intracellular recording, we show that a particular class of motion-sensitive neurons of the crab's lobula that project to the midbrain, the monostratified lobula giants type 1 (MLG1), form a system of 16 retinotopically organized elements that map the 360° azimuthal space. The preference of these neurons for horizontally moving objects conforms the visual ecology of the crab's mudflat world. With a mean receptive field of 118°, MLG1s have a large superposition among neighboring elements. Our results suggest that the MLG1 system conveys information on object position as a population vector. Such computational code can enable the accurate directional control observed in the visually guided behaviors of crabs.
高度活跃的昆虫和螃蟹依靠视觉运动信息来检测和追踪配偶、猎物或捕食者,为此它们需要包含视觉空间内部地图的方向控制系统。已知在果蝇的一个视神经节中存在由参与处理全景流动的大型运动敏感神经元形成的神经地图。然而,迄今为止,尚未在任何节肢动物中鉴定出用于处理单个物体空间位置的等效地图。无论刺激位于360°视野中的何处,螃蟹都可以直接逃离视觉威胁。在步行模拟器中进行测试时,粒突新海伦蟹在视觉危险刺激位置变化小于1°后会立即调整其奔跑方向。结合群体和单细胞染色以及体内细胞内记录,我们表明,螃蟹小叶中一类投射到中脑的特定运动敏感神经元,即单分层小叶巨细胞1型(MLG1),形成了一个由16个视网膜拓扑组织元素组成的系统,该系统映射360°方位空间。这些神经元对水平移动物体的偏好符合螃蟹泥滩世界的视觉生态。MLG1的平均感受野为118°,相邻元素之间有很大的重叠。我们的结果表明,MLG1系统作为群体向量传递关于物体位置的信息。这种计算编码可以实现螃蟹视觉引导行为中观察到的精确方向控制。