Suppr超能文献

乳腺钼靶密度:在多厂商数据集上视觉评估与全自动计算的比较

Mammographic density: Comparison of visual assessment with fully automatic calculation on a multivendor dataset.

作者信息

Sacchetto Daniela, Morra Lia, Agliozzo Silvano, Bernardi Daniela, Björklund Tomas, Brancato Beniamino, Bravetti Patrizia, Carbonaro Luca A, Correale Loredana, Fantò Carmen, Favettini Elisabetta, Martincich Laura, Milanesio Luisella, Mombelloni Sara, Monetti Francesco, Morrone Doralba, Pellegrini Marco, Pesce Barbara, Petrillo Antonella, Saguatti Gianni, Stevanin Carmen, Trimboli Rubina M, Tuttobene Paola, Valentini Marvi, Marra Vincenzo, Frigerio Alfonso, Bert Alberto, Sardanelli Francesco

机构信息

Research and Development Department, im3D S.p.A., Turin, Italy.

APSS, Trento, Italy.

出版信息

Eur Radiol. 2016 Jan;26(1):175-83. doi: 10.1007/s00330-015-3784-2. Epub 2015 May 1.

Abstract

OBJECTIVES

To compare breast density (BD) assessment provided by an automated BD evaluator (ABDE) with that provided by a panel of experienced breast radiologists, on a multivendor dataset.

METHODS

Twenty-one radiologists assessed 613 screening/diagnostic digital mammograms from nine centers and six different vendors, using the BI-RADS a, b, c, and d density classification. The same mammograms were also evaluated by an ABDE providing the ratio between fibroglandular and total breast area on a continuous scale and, automatically, the BI-RADS score. A panel majority report (PMR) was used as reference standard. Agreement (κ) and accuracy (proportion of cases correctly classified) were calculated for binary (BI-RADS a-b versus c-d) and 4-class classification.

RESULTS

While the agreement of individual radiologists with the PMR ranged from κ = 0.483 to κ = 0.885, the ABDE correctly classified 563/613 mammograms (92 %). A substantial agreement for binary classification was found for individual reader pairs (κ = 0.620, standard deviation [SD] = 0.140), individual versus PMR (κ = 0.736, SD = 0.117), and individual versus ABDE (κ = 0.674, SD = 0.095). Agreement between ABDE and PMR was almost perfect (κ = 0.831).

CONCLUSIONS

The ABDE showed an almost perfect agreement with a 21-radiologist panel in binary BD classification on a multivendor dataset, earning a chance as a reproducible alternative to visual evaluation.

KEY POINTS

Individual BD assessment differs from PMR with κ as low as 0.483. An ABDE correctly classified 92 % of mammograms with almost perfect agreement (κ = 0.831). An ABDE can be a valid alternative to subjective BD assessment.

摘要

目的

在多厂商数据集上,比较自动乳腺密度评估仪(ABDE)与一组经验丰富的乳腺放射科医生提供的乳腺密度(BD)评估结果。

方法

21名放射科医生使用BI-RADS a、b、c和d密度分类法,对来自9个中心和6个不同厂商的613例筛查/诊断性数字乳腺X线摄影进行评估。同一乳腺X线摄影还由ABDE进行评估,ABDE提供纤维腺体与全乳腺面积的连续比例,并自动给出BI-RADS评分。采用专家小组多数报告(PMR)作为参考标准。计算二元分类(BI-RADS a-b与c-d)和4类分类的一致性(κ)和准确性(正确分类病例的比例)。

结果

虽然个体放射科医生与PMR的一致性范围为κ = 0.483至κ = 0.885,但ABDE正确分类了613例乳腺X线摄影中的563例(92%)。在个体读者对之间(κ = 0.620,标准差[SD]=0.140)、个体与PMR之间(κ = 0.736,SD = 0.117)以及个体与ABDE之间(κ = 0.674,SD = 0.095),发现二元分类有高度一致性。ABDE与PMR之间的一致性几乎完美(κ = 0.831)。

结论

在多厂商数据集的二元BD分类中,ABDE与由21名放射科医生组成的小组表现出几乎完美的一致性,有望成为视觉评估的可重复替代方法。

关键点

个体BD评估与PMR的一致性低至κ = 0.483。ABDE正确分类了92%的乳腺X线摄影,一致性几乎完美(κ = 0.831)。ABDE可作为主观BD评估的有效替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验