Imaging Department, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France.
Predlife, Espace Maurice Tubiana, 39 rue Camille Desmoulins, 94800, Villejuif, France.
Eur Radiol. 2019 Jul;29(7):3830-3838. doi: 10.1007/s00330-019-06016-y. Epub 2019 Feb 15.
Radiologists' visual assessment of breast mammographic density (BMD) is subject to inter-observer variability. We aimed to develop and validate a new automated software tool mimicking expert radiologists' consensus assessments of 2D BMD, as per BI-RADS V recommendations.
The software algorithm was developed using a concept of Manhattan distance to compare a patient's mammographic image to reference mammograms with an assigned BMD category. Reference databases were built from a total of 2289 pairs (cranio-caudal and medio-lateral oblique views) of 2D full-field digital mammography (FFDM). Each image was independently assessed for BMD by a consensus of radiologists specialized in breast imaging. A validation set of additional 800 image pairs was evaluated for BMD both by the software and seven blinded radiologists specialized in breast imaging. The median score was used for consensus. Software reproducibility was assessed using FFDM image pairs from 214 patients in the validation set to compare BMD assessment between left and right breasts.
The software showed a substantial agreement with the radiologists' consensus (unweighted κ = 0.68, 95% CI 0.64-0.72) when considering the four breast density categories, and an almost perfect agreement (unweighted κ = 0.84, 95% CI 0.80-0.88) when considering clinically significant non-dense (A-B) and dense (C-D) categories. Correlation between left and right breasts was high (r = 0.87; 95% CI 0.84-0.90).
BMD assessment by the software was strongly correlated to radiologists' consensus assessments of BMD. Its performance should be compared to other methods, and its clinical utility evaluated in a risk assessment model.
• A new software tool assesses breast density in a standardized way. • The tool mimics radiologists' clinical assessment of breast density. • It may be incorporated in a breast cancer risk assessment model.
放射科医生对乳腺 X 线摄影密度(BMD)的视觉评估存在观察者间差异。我们旨在开发和验证一种新的自动化软件工具,该工具可模拟专家放射科医生根据 BI-RADS V 建议对 2D BMD 的共识评估。
该软件算法使用曼哈顿距离的概念来比较患者的乳腺 X 线摄影图像与具有指定 BMD 类别的参考乳腺 X 线摄影图像。参考数据库是从总共 2289 对(头尾位和内外斜位)2D 全视野数字乳腺 X 线摄影(FFDM)构建的。每个图像都由专门从事乳腺成像的放射科医生进行共识评估以确定 BMD。另外 800 对图像的验证集还通过软件和 7 位专门从事乳腺成像的盲法放射科医生进行了 BMD 评估。中位数评分用于共识。使用验证集中 214 名患者的 FFDM 图像对来评估软件的可重复性,以比较左右乳房的 BMD 评估。
当考虑四个乳腺密度类别时,软件与放射科医生的共识具有实质性一致性(未加权 κ=0.68,95%CI 0.64-0.72),而当考虑临床显著非致密(A-B)和致密(C-D)类别时,软件与放射科医生的共识具有近乎完美的一致性(未加权 κ=0.84,95%CI 0.80-0.88)。左右乳房之间的相关性很高(r=0.87;95%CI 0.84-0.90)。
软件的 BMD 评估与放射科医生对 BMD 的共识评估密切相关。应将其与其他方法进行比较,并在风险评估模型中评估其临床实用性。
• 一种新的软件工具以标准化的方式评估乳腺密度。• 该工具模拟放射科医生对乳腺密度的临床评估。• 它可纳入乳腺癌风险评估模型。