Suppr超能文献

一项评估大脑转录组的睡眠剥夺研究综述。

A review of sleep deprivation studies evaluating the brain transcriptome.

作者信息

Elliott Alisa S, Huber Jason D, O'Callaghan James P, Rosen Charles L, Miller Diane B

机构信息

School of Medicine, West Virginia University, Morgantown, WV USA.

School of Pharmacy, West Virginia University, Morgantown, WV USA.

出版信息

Springerplus. 2014 Dec 11;3:728. doi: 10.1186/2193-1801-3-728. eCollection 2014.

Abstract

Epidemiological studies show a positive association between adequate sleep and good health. Further, disrupted sleep may increase the risk for CNS diseases, such as stroke and Alzheimer's disease. However, there has been limited progress in determining how sleep is linked to brain health or how sleep disruption may increase susceptibility to brain insult and disease. Animal studies can aid in understanding these links. In reviewing the animal literature related to the effects of sleep disruption on the brain, we found most of the work was directed toward investigating and characterizing the role of various brain areas or structures in initiating and regulating sleep. In contrast, limited effort has been directed towards understanding how sleep disruption alters the brain's health or susceptibility to insult. We also note many current studies have determined the changes in the brain following compromised sleep by examining, for example, the brain transcriptome or to a more limited extent the proteome. However, these studies have utilized almost exclusively total sleep deprivation (e.g., 24 out of 24 hours) paradigms or single short periods of limited acute sleep deprivation (e.g., 3 out of 24 hours). While such strategies are beneficial in understanding how sleep is controlled, they may not have much translational value for determining links between sleep and brain health or for determining how sleep disruption may increase brain susceptibility to insult. Surprisingly, few studies have determined how the duration and recurrence of sleep deprivation influence the effects seen after sleep deprivation. Our aim in this review was to identify relevant rodent studies from 1980 through 2012 and analyze those that use varying durations of sleep deprivation or restriction in their effort to evaluate the effects of sleep deprivation on the brain transcriptome and to a more limited extent the proteome. We examined how differences in the duration of sleep deprivation affect gene and protein expression to better understand the full consequences of repeated sleep disruption on the brain. Future research needs to consider and emphasize how the type and extent of the sleep deprivation exposure impacts the conclusions reached concerning the influence of sleep disruption on the brain. We identified relevant studies between 1980 and 2012 by searching the electronic databases of PubMed, Medline (Ovid), Embase (Ovid), and Web of Science using the terms "sleep" AND "disrupt", "deprivation", "restrict", "fragment", "loss", "disturb", "disorder", "dysfunction", "brain", "cortex", striatum", hypothalamus", "hippocampus", "gene", "protein", "genomics", "proteomics", "polymerase chain reaction", "pcr", "microarray", "molecular", "rodent" "rat", "rats", "mouse", "mice". All searches were limited to rodent studies in English and the reference lists of retrieved articles were searched for additional pertinent studies.

摘要

流行病学研究表明,充足睡眠与健康状况呈正相关。此外,睡眠中断可能会增加患中枢神经系统疾病的风险,如中风和阿尔茨海默病。然而,在确定睡眠如何与大脑健康相关联,或睡眠中断如何增加大脑对损伤和疾病的易感性方面,进展有限。动物研究有助于理解这些联系。在回顾与睡眠中断对大脑影响相关的动物文献时,我们发现大部分工作都致力于研究和描述大脑各个区域或结构在启动和调节睡眠中的作用。相比之下,在理解睡眠中断如何改变大脑健康或对损伤的易感性方面投入的精力有限。我们还注意到,目前许多研究通过检查大脑转录组,或者在更有限的程度上检查蛋白质组,来确定睡眠受损后大脑的变化。然而,这些研究几乎都只采用了完全睡眠剥夺(例如,24小时中的24小时)范式,或单次短时间的有限急性睡眠剥夺(例如,24小时中的3小时)。虽然这些策略有助于理解睡眠是如何被控制的,但它们对于确定睡眠与大脑健康之间的联系,或确定睡眠中断如何增加大脑对损伤的易感性,可能没有太大的转化价值。令人惊讶的是,很少有研究确定睡眠剥夺的持续时间和复发情况如何影响睡眠剥夺后观察到的效果。我们这篇综述的目的是识别1980年至2012年间相关的啮齿动物研究,并分析那些使用不同持续时间的睡眠剥夺或限制来评估睡眠剥夺对大脑转录组以及在更有限程度上对蛋白质组影响的研究。我们研究了睡眠剥夺持续时间的差异如何影响基因和蛋白质表达,以更好地理解反复睡眠中断对大脑的全面影响。未来的研究需要考虑并强调睡眠剥夺暴露的类型和程度如何影响关于睡眠中断对大脑影响所达成的结论。我们通过使用“睡眠”和“干扰”“剥夺”“限制”“碎片化”“丧失”“扰乱”“紊乱”“功能障碍”“大脑”“皮层”“纹状体”“下丘脑”“海马体”“基因”“蛋白质”“基因组学”“蛋白质组学”“聚合酶链反应”“PCR”“微阵列”“分子”“啮齿动物”“大鼠”“大鼠们”“小鼠”“小鼠们”等术语,搜索PubMed、Medline(Ovid)、Embase(Ovid)和Web of Science的电子数据库,识别了1980年至2012年间的相关研究。所有搜索仅限于英文的啮齿动物研究,并在检索文章的参考文献列表中搜索其他相关研究。

相似文献

1
A review of sleep deprivation studies evaluating the brain transcriptome.
Springerplus. 2014 Dec 11;3:728. doi: 10.1186/2193-1801-3-728. eCollection 2014.
2
Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex.
J Neurosci. 2017 May 24;37(21):5263-5273. doi: 10.1523/JNEUROSCI.3981-16.2017.
5
The Impact of Sleep Deprivation on the Brain.
Acta Clin Croat. 2016 Sep;55(3):469-473. doi: 10.20471/acc.2016.55.03.17.
8
Effects of sleep deprivation on endothelial function in adult humans: a systematic review.
Geroscience. 2021 Feb;43(1):137-158. doi: 10.1007/s11357-020-00312-y. Epub 2021 Feb 9.
9

引用本文的文献

1
A Meta-Analysis of the Effects of Acute Sleep Deprivation on the Cortical Transcriptome in Rodent Models.
bioRxiv. 2025 Aug 2:2025.04.21.648791. doi: 10.1101/2025.04.21.648791.
2
Increased academic stress is associated with decreased plasma BDNF in Chilean college students.
PeerJ. 2023 Nov 3;11:e16357. doi: 10.7717/peerj.16357. eCollection 2023.
3
Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep.
Commun Biol. 2022 Aug 19;5(1):846. doi: 10.1038/s42003-022-03800-3.
4
Bidirectional Relationship Between Sleep Disturbances and Parkinson's Disease.
Front Neurol. 2022 Jul 18;13:927994. doi: 10.3389/fneur.2022.927994. eCollection 2022.
6
Phosphorylation Hypothesis of Sleep.
Front Psychol. 2020 Oct 2;11:575328. doi: 10.3389/fpsyg.2020.575328. eCollection 2020.
7
Unique transcriptional signatures of sleep loss across independently evolved cavefish populations.
J Exp Zool B Mol Dev Evol. 2020 Nov;334(7-8):497-510. doi: 10.1002/jez.b.22949. Epub 2020 Apr 29.
8
Sleep Deprivation Alters the Pituitary Stress Transcriptome in Male and Female Mice.
Front Endocrinol (Lausanne). 2019 Oct 9;10:676. doi: 10.3389/fendo.2019.00676. eCollection 2019.
9
Sleep Disturbance as a Potential Modifiable Risk Factor for Alzheimer's Disease.
Int J Mol Sci. 2019 Feb 13;20(4):803. doi: 10.3390/ijms20040803.

本文引用的文献

1
Sleep allostasis in chronic sleep restriction: the role of the norepinephrine system.
Brain Res. 2013 Sep 19;1531:9-16. doi: 10.1016/j.brainres.2013.07.048. Epub 2013 Aug 2.
2
Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1132-41. doi: 10.1073/pnas.1217154110. Epub 2013 Feb 25.
3
Regulation of alternative splicing by the circadian clock and food related cues.
Genome Biol. 2012 Jun 21;13(6):R54. doi: 10.1186/gb-2012-13-6-r54.
4
Sleep: a health imperative.
Sleep. 2012 Jun 1;35(6):727-34. doi: 10.5665/sleep.1846.
5
Rapid eye movement sleep deprivation modulates synapsinI expression in rat brain.
Neurosci Lett. 2012 Jun 27;520(1):62-6. doi: 10.1016/j.neulet.2012.05.031. Epub 2012 May 17.
6
Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain.
J Neurosci. 2012 May 9;32(19):6711-7. doi: 10.1523/JNEUROSCI.0045-12.2012.
7
Erasing synapses in sleep: is it time to be SHY?
Neural Plast. 2012;2012:264378. doi: 10.1155/2012/264378. Epub 2012 Feb 28.
8
Updated energy budgets for neural computation in the neocortex and cerebellum.
J Cereb Blood Flow Metab. 2012 Jul;32(7):1222-32. doi: 10.1038/jcbfm.2012.35. Epub 2012 Mar 21.
9
Quantifying the white blood cell transcriptome as an accessible window to the multiorgan transcriptome.
Bioinformatics. 2012 Feb 15;28(4):538-45. doi: 10.1093/bioinformatics/btr713. Epub 2012 Jan 4.
10
Sleep deprivation and sleep recovery modifies connexin36 and connexin43 protein levels in rat brain.
Neuroreport. 2012 Jan 25;23(2):103-7. doi: 10.1097/WNR.0b013e32834e8fcb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验