Suppr超能文献

机械信号在细胞分化和增殖中的作用:一个三维数值模型。

Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model.

作者信息

Mousavi Seyed Jamaleddin, Doweidar Mohamed Hamdy

机构信息

Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.

出版信息

PLoS One. 2015 May 1;10(5):e0124529. doi: 10.1371/journal.pone.0124529. eCollection 2015.

Abstract

Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis.

摘要

细胞分化、增殖和迁移是组织再生中的关键过程。实验证据证实,细胞分化或增殖可根据细胞外基质的硬度进行调节。例如,间充质干细胞(MSC)在模拟其天然底物硬度的基质中可分化为神经母细胞、软骨细胞或成骨细胞。然而,底物硬度调控细胞分化或增殖的确切机制尚不清楚。因此,本文构建了一个机械传感计算模型,以阐明在细胞迁移过程中底物硬度如何调节细胞分化和/或增殖。与实验观察结果一致,假定细胞的内部变形(一种机械信号)与细胞成熟状态直接协调细胞分化和/或增殖。我们的研究结果表明,MSC分别在软(0.1 - 1 kPa)、中等(20 - 25 kPa)或硬(30 - 45 kPa)底物中向神经源性、软骨源性或骨源性谱系分化。这些结果与著名的实验观察结果一致。值得注意的是,当MSC分化为相容表型时,平均净牵引力取决于底物硬度,在中等硬度和硬底物中可能增加,而在软基质中则会降低。然而,在所有情况下,由于细胞间相互作用,平均净牵引力在细胞增殖瞬间会显著增加。此外,由于细胞成熟时间的减少,细胞分化和增殖随着底物硬度的增加而加速。因此,该模型为解释底物硬度在机械趋化过程中调节细胞命运起关键作用这一假说提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验