Suppr超能文献

通过泰勒展开和压缩感知恢复网络拓扑结构

Recovering network topologies via Taylor expansion and compressive sensing.

作者信息

Li Guangjun, Wu Xiaoqun, Liu Juan, Lu Jun-an, Guo Chi

机构信息

Computer School, Wuhan University, Hubei 430072, China.

School of Mathematics and Statistics, Wuhan University, Hubei 430072, China.

出版信息

Chaos. 2015 Apr;25(4):043102. doi: 10.1063/1.4916788.

Abstract

Gaining knowledge of the intrinsic topology of a complex dynamical network is the precondition to understand its evolutionary mechanisms and to control its dynamical and functional behaviors. In this article, a general framework is developed to recover topologies of complex networks with completely unknown node dynamics based on Taylor expansion and compressive sensing. Numerical simulations illustrate the feasibility and effectiveness of the proposed method. Moreover, this method is found to have good robustness to weak stochastic perturbations. Finally, the impact of two major factors on the topology identification performance is evaluated. This method provides a natural and direct point to reconstruct network topologies from measurable data, which is likely to have potential applicability in a wide range of fields.

摘要

了解复杂动态网络的内在拓扑结构是理解其演化机制并控制其动态和功能行为的前提条件。在本文中,基于泰勒展开和压缩感知,开发了一个通用框架来恢复节点动态完全未知的复杂网络的拓扑结构。数值模拟说明了所提方法的可行性和有效性。此外,发现该方法对弱随机扰动具有良好的鲁棒性。最后,评估了两个主要因素对拓扑识别性能的影响。该方法为从可测量数据重建网络拓扑提供了一个自然而直接的切入点,很可能在广泛的领域具有潜在的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验