Suppr超能文献

基于压缩感知的多层网络拓扑识别

Compressive sensing-based topology identification of multilayer networks.

作者信息

Li Guangjun, Li Na, Liu Suhui, Wu Xiaoqun

机构信息

College of Sports Engineering and Information Technology, Wuhan Sports University, Hubei 430079, China.

School of Mathematics and Statistics, Wuhan University, Hubei 430072, China.

出版信息

Chaos. 2019 May;29(5):053117. doi: 10.1063/1.5093270.

Abstract

Recovering network topologies is of great significance in the study of complex networks. In this paper, a method for identifying structures of multilayer networks is proposed via compressive sensing and Taylor expansion. By using this method, the topologies of multilayer networks with unknown node dynamical functions can be identified from a relatively small number of observations. Numerical experiments are provided to show the effectiveness and efficiency of the method on different types of multilayer networks, where the intralayer topology and the interlayer topology of a multilayer network can be identified simultaneously. In particular, the topology of one layer can be identified even when nodes of the other layer are unobservable.

摘要

恢复网络拓扑结构在复杂网络研究中具有重要意义。本文提出了一种基于压缩感知和泰勒展开的多层网络结构识别方法。利用该方法,可从相对较少的观测值中识别出节点动态函数未知的多层网络的拓扑结构。通过数值实验验证了该方法在不同类型多层网络上的有效性和高效性,该方法能够同时识别多层网络的层内拓扑和层间拓扑。特别地,即使另一层的节点不可观测,也能识别出其中一层的拓扑结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验