Suppr超能文献

生物系统中基于不稳定周期轨道的控制策略的可靠性。

Reliability of unstable periodic orbit based control strategies in biological systems.

作者信息

Mishra Nagender, Hasse Maria, Biswal B, Singh Harinder P

机构信息

Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India.

Institut für Höchstleistungsrechnen, Universität Stuttgart, D-70569 Stuttgart, Germany.

出版信息

Chaos. 2015 Apr;25(4):043104. doi: 10.1063/1.4916899.

Abstract

Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

摘要

从生物系统获得的时间序列中反复出现且具有统计学意义的不稳定周期轨道(UPOs)的存在,现在通常被用作低维混沌的证据。从检测到的UPO轨迹中提取准确的动力学信息,对于旨在使系统在固定点附近稳定或使系统远离周期轨道的成功控制策略至关重要。一种来自返回映射的混合UPO检测方法,该方法结合了拓扑递归准则、矩阵拟合算法和固定点位置的严格准则,即使在存在大量噪声的情况下也能给出准确且具有统计学意义的UPOs。返回映射的几何形状、UPO访问同一轨迹的频率、数据集的长度、噪声强度和非平稳程度都会影响所提出方法的有效性。结果表明,在具有大量噪声的短数据集中,通常可以从明确的UPO检测中确定确定性,但导出的动力学特性很少准确且足以控制这些UPO周围的动力学。通过更严格的控制策略和自适应UPO跟踪对癫痫海马切片进行的重复混沌控制实验,在此背景下通过对癫痫脑切片的类似但随机的计算机模型进行类似控制实验的模拟进行重新解释。等效结果的再现表明,将此类实验中明显的控制成功与潜在动力学中可能的确定性联系起来需要更严格的标准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验