Suppr超能文献

从时间序列中检测高维混沌系统中的不稳定周期轨道:重构与自适应相结合

Detecting unstable periodic orbits in high-dimensional chaotic systems from time series: reconstruction meeting with adaptation.

作者信息

Ma Huanfei, Lin Wei, Lai Ying-Cheng

机构信息

School of Mathematical Sciences, Soochow University, Suzhou 215006, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):050901. doi: 10.1103/PhysRevE.87.050901. Epub 2013 May 10.

Abstract

Detecting unstable periodic orbits (UPOs) in chaotic systems based solely on time series is a fundamental but extremely challenging problem in nonlinear dynamics. Previous approaches were applicable but mostly for low-dimensional chaotic systems. We develop a framework, integrating approximation theory of neural networks and adaptive synchronization, to address the problem of time-series-based detection of UPOs in high-dimensional chaotic systems. An example of finding UPOs from the classic Mackey-Glass equation is presented.

摘要

仅基于时间序列检测混沌系统中的不稳定周期轨道(UPOs)是非线性动力学中的一个基本但极具挑战性的问题。先前的方法是适用的,但大多适用于低维混沌系统。我们开发了一个框架,将神经网络的逼近理论与自适应同步相结合,以解决在高维混沌系统中基于时间序列检测UPOs的问题。给出了一个从经典的Mackey-Glass方程中寻找UPOs的例子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验