Ma Huanfei, Lin Wei, Lai Ying-Cheng
School of Mathematical Sciences, Soochow University, Suzhou 215006, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):050901. doi: 10.1103/PhysRevE.87.050901. Epub 2013 May 10.
Detecting unstable periodic orbits (UPOs) in chaotic systems based solely on time series is a fundamental but extremely challenging problem in nonlinear dynamics. Previous approaches were applicable but mostly for low-dimensional chaotic systems. We develop a framework, integrating approximation theory of neural networks and adaptive synchronization, to address the problem of time-series-based detection of UPOs in high-dimensional chaotic systems. An example of finding UPOs from the classic Mackey-Glass equation is presented.
仅基于时间序列检测混沌系统中的不稳定周期轨道(UPOs)是非线性动力学中的一个基本但极具挑战性的问题。先前的方法是适用的,但大多适用于低维混沌系统。我们开发了一个框架,将神经网络的逼近理论与自适应同步相结合,以解决在高维混沌系统中基于时间序列检测UPOs的问题。给出了一个从经典的Mackey-Glass方程中寻找UPOs的例子。