Marshall Kara L, Chadha Mohit, deSouza Laura A, Sterbing-D'Angelo Susanne J, Moss Cynthia F, Lumpkin Ellen A
Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA.
Cell Rep. 2015 May 12;11(6):851-858. doi: 10.1016/j.celrep.2015.04.001. Epub 2015 Apr 30.
Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.
飞行机动需要快速的感觉整合以产生适应性运动输出。蝙蝠通过经过改良的前肢实现了卓越的敏捷性,这些前肢充当机翼,同时保留了物体操纵能力。翅膀的感觉输入提供行为相关信息以指导飞行;然而,翅膀感觉运动回路的组成部分尚未得到分析。在这里,我们阐明了食虫动物大棕蝠(Eptesicus fuscus)翅膀神经支配的组织方式。我们证明,翅膀的感觉神经支配与其他脊椎动物的前肢不同,揭示了蝙蝠躯体感觉核所报道的非典型地形组织的外周基础。此外,翅膀由一组不同寻常的感觉神经元支配,这些神经元准备好报告气流和触觉。最后,我们报告说,皮层神经元以稀疏的活动模式编码触觉和气流输入。总之,我们的发现确定了蝙蝠翅膀躯体感觉的神经基础,并暗示导致哺乳动物飞行的进化压力导致了不寻常的感觉运动投射。