Suppr超能文献

蝙蝠翅膀上气流感应毛的功能作用。

Functional role of airflow-sensing hairs on the bat wing.

作者信息

Sterbing-D'Angelo S J, Chadha M, Marshall K L, Moss C F

机构信息

Institute for Systems Research, University of Maryland, College Park, Maryland;

Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland; and.

出版信息

J Neurophysiol. 2017 Feb 1;117(2):705-712. doi: 10.1152/jn.00261.2016. Epub 2016 Nov 16.

Abstract

UNLABELLED

The wing membrane of the big brown bat (Eptesicus fuscus) is covered by a sparse grid of microscopic hairs. We showed previously that various tactile receptors (e.g., lanceolate endings and Merkel cell neurite complexes) are associated with wing-hair follicles. Furthermore, we found that depilation of these hairs decreased the maneuverability of bats in flight. In the present study, we investigated whether somatosensory signals arising from the hairs carry information about airflow parameters. Neural responses to calibrated air puffs on the wing were recorded from primary somatosensory cortex of E. fuscus Single units showed sparse, phasic, and consistently timed spikes that were insensitive to air-puff duration and magnitude. The neurons discriminated airflow from different directions, and a majority responded with highest firing rates to reverse airflow from the trailing toward the leading edge of the dorsal wing. Reverse airflow, caused by vortices, occurs commonly in slowly flying bats. Hence, the present findings suggest that cortical neurons are specialized to monitor reverse airflow, indicating laminar airflow disruption (vorticity) that potentially destabilizes flight and leads to stall.

NEW & NOTEWORTHY: Bat wings are adaptive airfoils that enable demanding flight maneuvers. The bat wing is sparsely covered with sensory hairs, and wing-hair removal results in reduced flight maneuverability. Here, we report for the first time single-neuron responses recorded from primary somatosensory cortex to airflow stimulation that varied in amplitude, duration, and direction. The neurons show high sensitivity to the directionality of airflow and might act as stall detectors.

摘要

未标注

大棕蝠(棕蝠)的翼膜覆盖着稀疏的微毛网格。我们之前表明,各种触觉感受器(如柳叶状末梢和默克尔细胞神经突复合体)与翼毛囊相关。此外,我们发现去除这些毛发会降低蝙蝠飞行时的机动性。在本研究中,我们调查了来自毛发的躯体感觉信号是否携带有关气流参数的信息。从棕蝠的初级躯体感觉皮层记录了对校准的翼部吹气的神经反应。单个神经元显示出稀疏、相位性且时间一致的尖峰,对吹气持续时间和幅度不敏感。这些神经元能够区分不同方向的气流,并且大多数对从背翼后缘向前缘的反向气流反应最为强烈,放电频率最高。由涡流引起的反向气流在缓慢飞行的蝙蝠中很常见。因此,目前的研究结果表明,皮层神经元专门用于监测反向气流,这表明层流气流受到干扰(涡度),可能会使飞行不稳定并导致失速。

新发现与值得关注之处

蝙蝠翅膀是适应性的翼型,能够实现复杂的飞行动作。蝙蝠翅膀稀疏地覆盖着感觉毛,去除翼毛会导致飞行机动性降低。在这里我们首次报告了从初级躯体感觉皮层记录到的对幅度、持续时间和方向不同的气流刺激的单神经元反应。这些神经元对气流方向具有高度敏感性,并可能充当失速探测器。

相似文献

1
Functional role of airflow-sensing hairs on the bat wing.
J Neurophysiol. 2017 Feb 1;117(2):705-712. doi: 10.1152/jn.00261.2016. Epub 2016 Nov 16.
3
Bat wing sensors support flight control.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11291-6. doi: 10.1073/pnas.1018740108. Epub 2011 Jun 20.
4
Somatosensory substrates of flight control in bats.
Cell Rep. 2015 May 12;11(6):851-858. doi: 10.1016/j.celrep.2015.04.001. Epub 2015 Apr 30.
5
Organization of the primary somatosensory cortex and wing representation in the Big Brown Bat, Eptesicus fuscus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jan;197(1):89-96. doi: 10.1007/s00359-010-0590-9. Epub 2010 Sep 29.
6
Ventral wing hairs provide tactile feedback for aerial prey capture in the big brown bat, Eptesicus fuscus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Sep;210(5):761-770. doi: 10.1007/s00359-023-01682-2. Epub 2023 Dec 14.
7
Sensory biology: bats feel the air flow.
Curr Biol. 2011 Sep 13;21(17):R666-7. doi: 10.1016/j.cub.2011.07.008.
8
Hair, there and everywhere: A comparison of bat wing sensory hair distribution.
Anat Rec (Hoboken). 2023 Nov;306(11):2681-2692. doi: 10.1002/ar.25176. Epub 2023 Feb 15.
9
Effects of Inertial Power and Inertial Force on Bat Wings.
Zoolog Sci. 2016 Jun;33(3):239-45. doi: 10.2108/zs150182.
10
Flapping wing aerodynamics: from insects to vertebrates.
J Exp Biol. 2016 Apr;219(Pt 7):920-32. doi: 10.1242/jeb.042317.

引用本文的文献

1
Greater mouse-tailed bats use their tail as a tactile sensor when navigating backwards.
iScience. 2025 Feb 17;28(3):112014. doi: 10.1016/j.isci.2025.112014. eCollection 2025 Mar 21.
2
Functional fibrillar interfaces: Biological hair as inspiration across scales.
Beilstein J Nanotechnol. 2024 Jun 6;15:664-677. doi: 10.3762/bjnano.15.55. eCollection 2024.
3
Ventral wing hairs provide tactile feedback for aerial prey capture in the big brown bat, Eptesicus fuscus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Sep;210(5):761-770. doi: 10.1007/s00359-023-01682-2. Epub 2023 Dec 14.
4
Lessons from natural flight for aviation: then, now and tomorrow.
J Exp Biol. 2023 Apr 25;226(Suppl_1). doi: 10.1242/jeb.245409. Epub 2023 Apr 17.
5
By a whisker: the sensory role of vibrissae in hovering flight in nectarivorous bats.
Proc Biol Sci. 2023 Feb 8;290(1992):20222085. doi: 10.1098/rspb.2022.2085. Epub 2023 Feb 1.
7
Echolocating bats can adjust sensory acquisition based on internal cues.
BMC Biol. 2020 Nov 9;18(1):166. doi: 10.1186/s12915-020-00904-2.

本文引用的文献

2
Somatosensory substrates of flight control in bats.
Cell Rep. 2015 May 12;11(6):851-858. doi: 10.1016/j.celrep.2015.04.001. Epub 2015 Apr 30.
3
The cellular and molecular basis of direction selectivity of Aδ-LTMRs.
Cell. 2014 Dec 18;159(7):1640-51. doi: 10.1016/j.cell.2014.11.038.
4
Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors.
Nature. 2014 May 29;509(7502):617-21. doi: 10.1038/nature13250. Epub 2014 Apr 6.
5
The organization of submodality-specific touch afferent inputs in the vibrissa column.
Cell Rep. 2013 Oct 17;5(1):87-98. doi: 10.1016/j.celrep.2013.08.051. Epub 2013 Oct 10.
6
Variation in Young's modulus along the length of a rat vibrissa.
J Biomech. 2011 Nov 10;44(16):2775-81. doi: 10.1016/j.jbiomech.2011.08.027. Epub 2011 Oct 11.
7
Bat wing sensors support flight control.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11291-6. doi: 10.1073/pnas.1018740108. Epub 2011 Jun 20.
8
A computational fluid dynamics model of viscous coupling of hairs.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Jun;196(6):385-95. doi: 10.1007/s00359-010-0524-6. Epub 2010 Apr 11.
9
Hair receptor sensitivity to changes in laminar boundary layer shape.
Bioinspir Biomim. 2010 Mar;5(1):16002. doi: 10.1088/1748-3182/5/1/016002. Epub 2010 Feb 16.
10
The advantages of a tapered whisker.
PLoS One. 2010 Jan 20;5(1):e8806. doi: 10.1371/journal.pone.0008806.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验