Suppr超能文献

复杂血管内手术期间外科医生的辐射剂量。

Surgeon radiation dose during complex endovascular procedures.

作者信息

Kirkwood Melissa L, Guild Jeffrey B, Arbique Gary M, Anderson Jon A, Valentine R James, Timaran Carlos

机构信息

Division of Vascular and Endovascular Surgery, Department of Surgery, UT Southwestern Medical Center, Dallas, Tex.

Division of Medical Physics, Department of Radiology, UT Southwestern Medical Center, Dallas, Tex.

出版信息

J Vasc Surg. 2015 Aug;62(2):457-63. doi: 10.1016/j.jvs.2015.02.050. Epub 2015 May 1.

Abstract

BACKGROUND

Surgeon radiation dose during complex fluoroscopically guided interventions (FGIs) has not been well studied. We sought to characterize radiation exposure to surgeons during FGIs based on procedure type, operator position, level of operator training, upper vs lower body exposure, and addition of protective shielding.

METHODS

Optically stimulable, luminescent nanoDot (Landauer, Inc, Glenwood, Ill) detectors were used to measure radiation dose prospectively to surgeons during FGIs. The nanoDot dosimeters were placed outside the lead apron of the primary and assistant operators at the left upper chest and left lower pelvis positions. For each case, the procedure type, the reference air kerma, the kerma-area product, the relative position of the operator, the level of training of the fellow, and the presence or absence of external additional shielding devices were recorded. Three positions were assigned on the right-hand side of the patient in decreasing relative proximity to the flat panel detector (A, B, and C, respectively). Position A (main operator) was closest to the flat panel detector. Position D was on the left side of the patient at the brachial access site. The nanoDots were read using a microSTARii medical dosimetry system (Landauer, Inc) after every procedure. The nanoDot dosimetry system was calibrated for scattered radiation in an endovascular suite with a National Institute of Standards and Technology traceable solid-state radiation detector (Piranha T20; RTI Electronics, Fairfield, NJ). Comparative statistical analysis of nanoDot dose levels between categories was performed by analysis of variance with Tukey pairwise comparisons. Bonferroni correction was used for multiple comparisons.

RESULTS

There were 415 nanoDot measurements with the following case distribution: 16 thoracic endovascular aortic repairs/endovascular aneurysm repairs, 18 fenestrated endovascular aneurysm repairs (FEVARs), 13 embolizations, 41 lower extremity interventions, 10 fistulograms, 13 visceral interventions, and 3 cerebrovascular procedures. The mean operator effective dose for FEVARs was higher than for other case types (P < .03), 20 μSv at position A and 9 μSv at position B. For all case types, position A (9.0 μSv) and position D (20 μSv) received statistically higher effective doses than position B (4 μSv) or position C (0.4 μSv) (P < .001). However, the mean operator effective dose for position D was not statistically different from that for position A. The addition of the lead skirt significantly decreased the lower body dose (33 ± 3.4 μSv to 6.3 ± 3.3 μSv) but not the upper body dose (6.5 ± 3.3 μSv to 5.7 ± 2.2 μSv). Neither ceiling-mounted shielding nor level of fellow training affected operator dose.

CONCLUSIONS

Surgeon radiation dose during FGIs depends on case type, operator position, and table skirt use but not on the level of fellow training. On the basis of these data, the primary operator could perform approximately 12 FEVARs/wk and have an annual dose <10 mSv, which would not exceed lifetime occupational dose limits during a 35-year career. With practical case loads, operator doses are relatively low and unlikely to exceed occupational limits.

摘要

背景

在复杂的荧光透视引导介入手术(FGIs)过程中,外科医生所受辐射剂量尚未得到充分研究。我们试图根据手术类型、术者位置、术者培训水平、上身与下身暴露情况以及是否添加防护屏蔽来描述FGIs过程中外科医生的辐射暴露情况。

方法

使用光激发发光纳米点探测器(Landauer公司,伊利诺伊州格伦伍德)前瞻性地测量FGIs过程中外科医生所受的辐射剂量。纳米点剂量计放置在主刀医生和助手铅衣外的左上胸部和左下骨盆位置。对于每例手术,记录手术类型、参考空气比释动能、比释动能面积乘积、术者相对位置、助手培训水平以及是否存在外部附加屏蔽装置。在患者右侧根据与平板探测器相对距离的减小依次设定三个位置(分别为A、B和C)。位置A(主刀医生)最靠近平板探测器。位置D在患者左侧肱动脉穿刺部位。每次手术后使用microSTARii医学剂量测定系统(Landauer公司)读取纳米点剂量。纳米点剂量测定系统在血管内手术室使用可溯源至美国国家标准与技术研究院的固态辐射探测器(Piranha T20;RTI Electronics公司,新泽西州费尔菲尔德)进行散射辐射校准。通过方差分析及Tukey两两比较对不同类别间纳米点剂量水平进行比较统计分析。采用Bonferroni校正进行多重比较。

结果

共进行了415次纳米点测量,病例分布如下:16例胸主动脉腔内修复术/腹主动脉瘤腔内修复术,18例开窗型腹主动脉瘤腔内修复术(FEVARs),13例栓塞术,41例下肢介入手术,10例瘘管造影术,13例内脏介入手术和3例脑血管手术。FEVARs手术的术者平均有效剂量高于其他病例类型(P < 0.03),位置A为20 μSv,位置B为9 μSv。对于所有病例类型,位置A(9.0 μSv)和位置D(20 μSv)的有效剂量在统计学上高于位置B(4 μSv)或位置C(0.4 μSv)(P < 0.001)。然而,位置D的术者平均有效剂量与位置A在统计学上无差异。添加铅裙显著降低了下身剂量(从33 ± 3.4 μSv降至6.3 ± 3.3 μSv),但未降低上身剂量(从6.5 ± 3.3 μSv降至5.7 ± 2.2 μSv)。天花板安装的屏蔽和助手培训水平均未影响术者剂量。

结论

FGIs过程中外科医生的辐射剂量取决于病例类型、术者位置和手术台裙的使用情况,而与助手培训水平无关。根据这些数据,主刀医生每周可进行约12例FEVARs手术且年剂量<10 mSv,在35年职业生涯中不会超过终身职业剂量限值。在实际病例量情况下,术者剂量相对较低,不太可能超过职业限值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验