Suppr超能文献

CRAFFT:一种基于贝叶斯网络的活动预测模型。

CRAFFT: An Activity Prediction Model based on Bayesian Networks.

作者信息

Nazerfard Ehsan, Cook Diane J

机构信息

School of Electrical Engineering and Computer Science, EME 206 Spokane Street, Washington State University, Pullman, WA USA, Tel.: +1 425 518-7974.

School of Electrical Engineering and Computer Science, EME 121 Spokane Street, Washington State University, Pullman, WA USA, Tel.: +1 509 335-4985.

出版信息

J Ambient Intell Humaniz Comput. 2015 Apr 1;6(2):193-205. doi: 10.1007/s12652-014-0219-x.

Abstract

Recent advances in the areas of pervasive computing, data mining, and machine learning offer unique opportunities to provide health monitoring and assistance for individuals facing difficulties to live independently in their homes. Several components have to work together to provide health monitoring for smart home residents including, but not limited to, activity recognition, activity discovery, activity prediction, and prompting system. Compared to the significant research done to discover and recognize activities, less attention has been given to predict the future activities that the resident is likely to perform. Activity prediction components can play a major role in design of a smart home. For instance, by taking advantage of an activity prediction module, a smart home can learn context-aware rules to prompt individuals to initiate important activities. In this paper, we propose an activity prediction model using Bayesian networks together with a novel two-step inference process to predict both the next activity features and the next activity label. We also propose an approach to predict the start time of the next activity which is based on modeling the relative start time of the predicted activity using the continuous normal distribution and outlier detection. To validate our proposed models, we used real data collected from physical smart environments.

摘要

普适计算、数据挖掘和机器学习领域的最新进展为那些在家中难以独立生活的个人提供健康监测和援助带来了独特机遇。要为智能家居居民提供健康监测,需要多个组件协同工作,包括但不限于活动识别、活动发现、活动预测和提示系统。与在发现和识别活动方面所做的大量研究相比,对预测居民可能执行的未来活动的关注较少。活动预测组件在智能家居设计中可以发挥重要作用。例如,通过利用活动预测模块,智能家居可以学习上下文感知规则,以促使个人启动重要活动。在本文中,我们提出了一种使用贝叶斯网络以及新颖的两步推理过程的活动预测模型,以预测下一个活动特征和下一个活动标签。我们还提出了一种基于使用连续正态分布和异常值检测对预测活动的相对开始时间进行建模来预测下一个活动开始时间的方法。为了验证我们提出 的模型,我们使用了从实际智能环境中收集的真实数据。

相似文献

1
CRAFFT: An Activity Prediction Model based on Bayesian Networks.CRAFFT:一种基于贝叶斯网络的活动预测模型。
J Ambient Intell Humaniz Comput. 2015 Apr 1;6(2):193-205. doi: 10.1007/s12652-014-0219-x.
7
One-Class Classification-Based Real-Time Activity Error Detection in Smart Homes.基于单类分类的智能家居实时活动错误检测
IEEE J Sel Top Signal Process. 2016 Aug;10(5):914-923. doi: 10.1109/JSTSP.2016.2535972. Epub 2016 Feb 29.
9
Assessing the quality of activities in a smart environment.评估智能环境中活动的质量。
Methods Inf Med. 2009;48(5):480-5. doi: 10.3414/ME0592. Epub 2009 May 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验