Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
Gene Ther. 2015 Sep;22(9):685-95. doi: 10.1038/gt.2015.44. Epub 2015 May 4.
This article describes a novel method merging the cloning of viral vector producer cells with vector titer screening, allowing for screening 200-500 clones in 2 weeks. It makes use of a GFP separated into two fragments, S10 and S11 (Split GFP), fluorescing only upon transcomplementation. Producer cells carrying a S11 viral transgene are cloned in 96-well plates and co-cultured with target cells stably expressing S10. During the period of clone expansion, S11 viruses infect S10 target cells reconstituting the GFP signal. Transcomplemented fluorescence data provide direct estimation of the clone's productivity and can be analyzed in terms of density distribution, offering valuable information on the average productivity of the cell population and allowing the identification of high-producing clones. The method was validated by establishing a retrovirus producer from a nude cell line, in <3 months, inserting three vector constructs without clone selection or screening in between. Clones producing up to 10(8) infectious particles per ml were obtained, delivering optimal ratios of infectious-to-total particles (1 to 5). The method was additionally used to evaluate the production performance of HEK 293 and HEK 293T cell lines demonstrating that the latter sustains increased titers. Finally, it was used to study genetic manipulation of glutathione metabolism in retrovirus production showing that changing cell metabolism steers higher vector expression with titer increases of more than one order of magnitude.This method is a valuable tool not only for cell line development but also for genetic manipulation of viral vector and/or producer cells contributing to advancing the field of viral gene therapy.
本文描述了一种新的方法,将病毒载体生产细胞的克隆与载体滴度筛选相结合,可在 2 周内筛选 200-500 个克隆。它利用 GFP 分成两个片段 S10 和 S11(Split GFP),只有在转互补时才会发光。携带 S11 病毒转基因的生产细胞在 96 孔板中克隆,并与稳定表达 S10 的靶细胞共培养。在克隆扩增期间,S11 病毒感染 S10 靶细胞,重新构成 GFP 信号。转互补荧光数据可直接估计克隆的生产力,并可根据密度分布进行分析,提供有关细胞群体平均生产力的有价值信息,并允许鉴定高产克隆。该方法通过在<3 个月内从裸细胞系建立逆转录病毒生产细胞,在中间无需进行克隆选择或筛选,插入了三个载体构建体进行了验证。获得了高达 10(8)个/ml 的感染性颗粒的克隆,提供了最佳的感染性与总颗粒比(1 比 5)。该方法还用于评估 HEK 293 和 HEK 293T 细胞系的生产性能,表明后者可维持更高的滴度。最后,它被用于研究逆转录病毒生产中谷胱甘肽代谢的遗传操作,表明改变细胞代谢可引导更高的载体表达,滴度增加超过一个数量级。该方法不仅是细胞系开发的有价值工具,也是病毒载体和/或生产细胞遗传操作的有价值工具,有助于推进病毒基因治疗领域。