Giometto Andrea, Formentin Marco, Rinaldo Andrea, Cohen Joel E, Maritan Amos
Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland;
Dipartimento di Fisica ed Astronomia, Università di Padova, I-35131 Padova, Italy; Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, CZ-18208 Prague, Czech Republic;
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7755-60. doi: 10.1073/pnas.1505882112. Epub 2015 May 4.
Taylor's law (TL) states that the variance V of a nonnegative random variable is a power function of its mean M; i.e., V = aM(b). TL has been verified extensively in ecology, where it applies to population abundance, physics, and other natural sciences. Its ubiquitous empirical verification suggests a context-independent mechanism. Sample exponents b measured empirically via the scaling of sample mean and variance typically cluster around the value b = 2. Some theoretical models of population growth, however, predict a broad range of values for the population exponent b pertaining to the mean and variance of population density, depending on details of the growth process. Is the widely reported sample exponent b ≃ 2 the result of ecological processes or could it be a statistical artifact? Here, we apply large deviations theory and finite-sample arguments to show exactly that in a broad class of growth models the sample exponent is b ≃ 2 regardless of the underlying population exponent. We derive a generalized TL in terms of sample and population exponents b(jk) for the scaling of the kth vs. the jth cumulants. The sample exponent b(jk) depends predictably on the number of samples and for finite samples we obtain b(jk) ≃ k = j asymptotically in time, a prediction that we verify in two empirical examples. Thus, the sample exponent b ≃ 2 may indeed be a statistical artifact and not dependent on population dynamics under conditions that we specify exactly. Given the broad class of models investigated, our results apply to many fields where TL is used although inadequately understood.
泰勒定律(TL)指出,非负随机变量的方差V是其均值M的幂函数;即,V = aM(b)。泰勒定律已在生态学中得到广泛验证,它适用于种群数量、物理学及其他自然科学领域。其普遍的实证验证表明存在一种与背景无关的机制。通过样本均值和方差的缩放关系经实证测量得到的样本指数b通常聚集在b = 2附近。然而,一些种群增长的理论模型预测,取决于增长过程的细节,与种群密度均值和方差相关的种群指数b会有广泛的取值范围。广泛报道的样本指数b ≃ 2是生态过程的结果,还是可能只是一种统计假象呢?在这里,我们应用大偏差理论和有限样本论证来确切表明,在一大类增长模型中,无论潜在的种群指数是多少,样本指数都是b ≃ 2。我们根据第k个与第j个累积量的缩放关系,推导出了一个关于样本指数和种群指数b(jk)的广义泰勒定律。样本指数b(jk)可预测地取决于样本数量,对于有限样本,我们在时间上渐近地得到b(jk) ≃ k = j,这一预测我们在两个实证例子中得到了验证。因此,在我们精确指定的条件下,样本指数b ≃ 2确实可能是一种统计假象,且不依赖于种群动态。鉴于所研究的模型种类广泛,我们的结果适用于许多使用泰勒定律但理解并不充分的领域。