Universidad Pontificia Comillas, Faculty of Economics and Business Administration, Madrid, Spain.
Complex Systems Group, Universidad Politécnica de Madrid, Madrid, Spain.
PLoS Comput Biol. 2021 Dec 6;17(12):e1008906. doi: 10.1371/journal.pcbi.1008906. eCollection 2021 Dec.
Prediction is one of the last frontiers in ecology. Indeed, predicting fine-scale species composition in natural systems is a complex challenge as multiple abiotic and biotic processes operate simultaneously to determine local species abundances. On the one hand, species intrinsic performance and their tolerance limits to different abiotic pressures modulate species abundances. On the other hand, there is growing recognition that species interactions play an equally important role in limiting or promoting such abundances within ecological communities. Here, we present a joint effort between ecologists and data scientists to use data-driven models to predict species abundances using reasonably easy to obtain data. We propose a sequential data-driven modeling approach that in a first step predicts the potential species abundances based on abiotic variables, and in a second step uses these predictions to model the realized abundances once accounting for species competition. Using a curated data set over five years we predict fine-scale species abundances in a highly diverse annual plant community. Our models show a remarkable spatial predictive accuracy using only easy-to-measure variables in the field, yet such predictive power is lost when temporal dynamics are taken into account. This result suggests that predicting future abundances requires longer time series analysis to capture enough variability. In addition, we show that these data-driven models can also suggest how to improve mechanistic models by adding missing variables that affect species performance such as particular soil conditions (e.g. carbonate availability in our case). Robust models for predicting fine-scale species composition informed by the mechanistic understanding of the underlying abiotic and biotic processes can be a pivotal tool for conservation, especially given the human-induced rapid environmental changes we are experiencing. This objective can be achieved by promoting the knowledge gained with classic modelling approaches in ecology and recently developed data-driven models.
预测是生态学的最后一个前沿领域之一。实际上,预测自然系统中细尺度物种组成是一个复杂的挑战,因为多个非生物和生物过程同时作用以确定当地物种丰度。一方面,物种内在表现及其对不同非生物压力的耐受极限调节物种丰度。另一方面,越来越多的人认识到,物种相互作用在限制或促进生态群落中这些丰度方面同样起着重要作用。在这里,我们展示了生态学家和数据科学家之间的合作,使用数据驱动的模型使用相对容易获得的数据来预测物种丰度。我们提出了一种顺序数据驱动的建模方法,该方法在第一步中根据非生物变量预测潜在的物种丰度,在第二步中使用这些预测来建模实现的丰度,一旦考虑到物种竞争。使用经过五年时间精心整理的数据集,我们预测了高度多样化的一年生植物群落中的细尺度物种丰度。我们的模型仅使用野外易于测量的变量就显示出出色的空间预测准确性,但考虑到时间动态时,这种预测能力就会丧失。这一结果表明,预测未来的丰度需要进行更长时间序列分析以捕获足够的可变性。此外,我们还表明,这些数据驱动的模型还可以通过添加影响物种表现的缺失变量(例如特定的土壤条件(例如我们案例中的碳酸盐可用性))来建议如何改进机械模型。通过机械理解潜在的非生物和生物过程来预测细尺度物种组成的稳健模型可以成为保护的关键工具,特别是考虑到我们正在经历的人为引起的快速环境变化。这一目标可以通过促进经典建模方法在生态学中以及最近开发的数据驱动模型中获得的知识来实现。