Gilra Aditya, Bhalla Upinder S
National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India.
PLoS One. 2015 May 5;10(5):e0098045. doi: 10.1371/journal.pone.0098045. eCollection 2015.
Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.
初级感觉脑区的刺激编码为理解其神经回路机制提供了丰富的数据背景。脊椎动物的嗅球是一个具有不寻常的两层树突 - 树突连接的输入区域,其在气味编码中的作用尚不清楚。为了阐明这些作用,我们构建了一个详细的大鼠嗅球房室模型,该模型综合了比以往建模范围更广的关于嗅球生理学和反应动力学的实验观察结果。我们预测,与之前的对比度增强模型不同,表层抑制性中间神经元(球周细胞)使主神经元( mitral 细胞)的输入 - 输出转换线性化。这种线性化是复制观察到的 mitral 细胞气味反应线性总和所必需的。此外,在我们的模型中,动作电位沿 mitral 细胞的侧树突反向传播并激活深层抑制性中间神经元(颗粒细胞)。利用这一点,我们提出由颗粒细胞介导的 mitral 细胞之间的稀疏、长程抑制,以解释尽管姐妹 mitral 细胞接受相似的受体输入,但观察到它们的气味反应呼吸相位有时如何去相关。我们还排除了一些替代机制。在我们的机制中,我们预测少数从不同受体接收输入的远距离 mitral 细胞,通过激活颗粒细胞的不相交子集,对姐妹 mitral 细胞进行差异性抑制。这种差异性抑制足以使它们的放电率相位去相关,而不仅仅是调节它们的尖峰时间。因此,我们这个受到充分约束的模型揭示了嗅球中两类数量最多的中间神经元的新计算作用。