Suppr超能文献

跑步过程中成对相关性的变化重塑了主嗅球中的全局网络状态。

Changes in pairwise correlations during running reshape global network state in the main olfactory bulb.

机构信息

Medical Scientist Training Program (MSTP), University of Rochester School of Medicine, Rochester, New York.

Department of Neuroscience and Neuroscience Graduate Program (NGP), University of Rochester School of Medicine, Rochester, New York.

出版信息

J Neurophysiol. 2021 May 1;125(5):1612-1623. doi: 10.1152/jn.00464.2020. Epub 2021 Mar 3.

Abstract

Neural codes for sensory inputs have been hypothesized to reside in a broader space defined by ongoing patterns of spontaneous activity. To understand the structure of this spontaneous activity in the olfactory system, we performed high-density recordings of neural populations in the main olfactory bulb of awake mice. We observed changes in pairwise correlations of spontaneous activity between mitral and tufted (M/T) cells when animals were running, which resulted in an increase in the entropy of the population. Surprisingly, pairwise maximum entropy models that described the population activity using only assumptions about the firing rates and correlations of neurons were better at predicting the global structure of activity when animals were stationary as compared to when they were running, implying that higher order (3rd, 4th order) interactions governed population activity during locomotion. Taken together, we found that locomotion alters the functional interactions that shape spontaneous population activity at the earliest stages of olfactory processing, one synapse away from the sensory receptors in the nasal epithelium. These data suggest that the coding space available for sensory representations responds adaptively to the animal's behavioral state. The organization and structure of spontaneous population activity in the olfactory system places constraints of how odor information is represented. Using high-density electrophysiological recordings of mitral and tufted cells, we found that running increases the dimensionality of spontaneous activity, implicating higher order interactions among neurons during locomotion. Behavior, thus, flexibly alters neuronal activity at the earliest stages of sensory processing.

摘要

人们假设,感觉输入的神经编码存在于由持续的自发性活动模式定义的更广泛的空间中。为了了解嗅觉系统中这种自发性活动的结构,我们在清醒小鼠的主要嗅觉球中进行了高密度的神经元群体记录。我们观察到当动物奔跑时,嗅球中僧帽细胞(mitral cells)和丛状细胞(tufted cells)之间自发活动的成对相关性发生变化,导致群体的熵增加。令人惊讶的是,当动物静止时,描述群体活动的成对最大熵模型(pairwise maximum entropy models)仅基于神经元的发放率和相关性的假设,比动物奔跑时更能预测活动的整体结构,这意味着在运动过程中,更高阶(三阶、四阶)的相互作用控制着群体活动。总的来说,我们发现运动改变了功能相互作用,这些相互作用在嗅觉处理的最早阶段形成了自发的群体活动,而这些相互作用就在嗅觉感受器所在的鼻上皮的一个突触之外。这些数据表明,用于感觉表示的编码空间会自适应地响应动物的行为状态。嗅觉系统中自发群体活动的组织和结构限制了气味信息的表示方式。使用对僧帽细胞和丛状细胞的高密度电生理记录,我们发现跑步增加了自发活动的维度,这暗示了运动过程中神经元之间存在更高阶的相互作用。因此,行为灵活地改变了感觉处理的最早阶段的神经元活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a014/8356770/c9331616efae/JN-00464-2020r01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验