Liu Canjun, Yang Yahui, Li Wenzhang, Li Jie, Li Yaomin, Shi Qilin, Chen Qiyuan
†School of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan South Road, Changsha 410083, China.
‡College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
ACS Appl Mater Interfaces. 2015 May 27;7(20):10763-70. doi: 10.1021/acsami.5b00830. Epub 2015 May 12.
Zn(x)Bi2S(3+x) sensitized platelike WO3 photoelectrodes on FTO substrates were for the first time prepared via a sequential ionic layer adsorption reaction (SILAR) process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet visible spectrometry (UV-vis), and Raman spectra. The results show that the ZnxBi2S3+x quantum dots (QDs) are uniformly coated on the entire surface of WO3 plates, forming a WO3/Zn(x)Bi2S(3+x) core/shell structure. The Zn(x)Bi2S(3+x)/WO3 films show a superior ability to capture visible light. High-efficiency photoelectrochemical (PEC) hydrogen generation is demonstrated using the prepared electrodes as photoanodes in a typical three-electrode electrochemical cell. Compared to the Bi2S3/WO3 photoelectrodes, the Zn(x)Bi2S(3+x)/WO3 photoelectrodes exhibit good photostability and excellent PEC activity, and the photocurrent density is up to 7.0 mA cm(-2) at -0.1 V versus Ag/AgCl under visible light illumination. Investigation of the electron transport properties of the photoelectrodes shows that the introduction of ZnS enhances the photoelectrons' transport rate in the photoelectrode. The high PEC activity demonstrates the potential of the Zn(x)Bi2S(3+x)/WO3 film as an efficient photoelectrode for hydrogen generation.
通过连续离子层吸附反应(SILAR)工艺首次制备了在FTO衬底上的Zn(x)Bi2S(3+x)敏化的片状WO3光电极。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外可见光谱(UV-vis)和拉曼光谱对样品进行了表征。结果表明,ZnxBi2S3+x量子点(QDs)均匀地包覆在WO3片的整个表面上,形成了WO3/Zn(x)Bi2S(3+x)核壳结构。Zn(x)Bi2S(3+x)/WO3薄膜显示出优异的可见光捕获能力。在典型的三电极电化学池中,使用制备的电极作为光阳极,展示了高效的光电化学(PEC)产氢性能。与Bi2S3/WO3光电极相比,Zn(x)Bi2S(3+x)/WO3光电极表现出良好的光稳定性和优异的PEC活性,在可见光照射下,相对于Ag/AgCl在-0.1 V时的光电流密度高达7.0 mA cm(-2)。对光电极电子传输性质的研究表明,ZnS的引入提高了光电极中光电子的传输速率。高PEC活性证明了Zn(x)Bi2S(3+x)/WO3薄膜作为高效产氢光电极的潜力。