College of Physics, Optoelectronics and Energy, Center for Energy Conversion Materials & Physics, Jiangsu Key Laboratory of Thin Films, and ‡Analysis and Testing Center, Soochow University , Suzhou 215006, P. R. China.
ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40235-40243. doi: 10.1021/acsami.7b11510. Epub 2017 Nov 7.
The rational design of semiconductor photoanodes with sufficient light absorption, efficient photogenerated carrier separation, and fast charge transport is crucial for photoelectrochemical (PEC) water splitting. Incorporating a small-band-gap semiconductor to a large-band-gap material with matched energy band position is a promising route to improve the light harvesting and charge transport. Herein, we report the fabrication of a three-dimensional heterojunction with uniform BiS nanorods on WO nanoplates by hydrothermal process and chemical bath deposition. The seed layer strategy was used to assist the growth of BiS nanorods for perfect interface contact between WO and BiS. The as-prepared WO/BiS composite exhibited a much enhanced photocurrent (5.95 mA/cm at 0.9 V vs reversible hydrogen electrode), which is 35 and 1.4 times higher than those of pristine WO and WO/BiS composite without a seed layer, respectively. In addition, higher incident photon-to-current conversion efficiency (68.8%) and photoconversion efficiency (1.70%) were achieved. The enhancement mechanism was investigated in detail, and the sufficient light absorption, efficient charge transport, and high carrier density simultaneously contribute to the improved PEC activity. These findings will open up new opportunities to develop other highly efficient heterostructures as photoelectrodes for PEC applications.
具有充分光吸收、高效光生载流子分离和快速电荷输运的半导体光阳极的合理设计对于光电化学(PEC)水分解至关重要。将小带隙半导体与具有匹配能带位置的大带隙材料结合是提高光捕获和电荷输运的一种很有前途的途径。在此,我们通过水热法和化学浴沉积法报告了在 WO 纳米板上制备具有均匀 BiS 纳米棒的三维异质结。采用种子层策略辅助 BiS 纳米棒的生长,以实现 WO 和 BiS 之间的完美界面接触。所制备的 WO/BiS 复合材料表现出增强的光电流(在 0.9 V 相对于可逆氢电极时为 5.95 mA/cm),分别比原始 WO 和没有种子层的 WO/BiS 复合材料高 35 倍和 1.4 倍。此外,还实现了更高的入射光子到电流转换效率(68.8%)和光电转换效率(1.70%)。详细研究了增强机制,充分的光吸收、高效的电荷输运和高载流子密度共同促进了改善的 PEC 活性。这些发现将为开发其他高效异质结构作为 PEC 应用的光电极开辟新的机会。