El Hiani Yassine, Linsdell Paul
Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
J Biol Chem. 2015 Jun 19;290(25):15855-15865. doi: 10.1074/jbc.M115.656181. Epub 2015 May 5.
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm.
作为一种离子通道,囊性纤维化跨膜传导调节因子必须形成一条连续的通道,以供氯离子(Cl⁻)和其他阴离子在细胞质与细胞外溶液之间移动。该通道跨膜部分的结构和功能都已明确。相比之下,连接细胞质与跨膜区域的通道结构尚不清楚,且构成该通道的蛋白质不同部分的功能作用也未得到描述。我们使用膜片钳记录和半胱氨酸可及性诱变来鉴定带正电荷的氨基酸侧链,这些侧链将细胞质中的Cl⁻离子吸引到孔的内口。我们的结果表明,位于该蛋白质不同细胞内环中的赖氨酸-190、精氨酸-248、精氨酸-303、赖氨酸-370、赖氨酸-1041和精氨酸-1048的侧链,在Cl⁻离子的静电吸引中起重要作用。这些残基的突变和共价修饰对Cl⁻通透速率有电荷依赖性影响,证明了它们在最大化Cl⁻通量中的功能作用。其他附近带正电荷的侧链不参与与Cl⁻的静电相互作用。这些吸引Cl⁻的残基的位置表明,细胞质中的Cl⁻离子通过位于第四和第六个跨膜螺旋的细胞质延伸之间的侧向入口进入孔中;在第十和第十二个跨膜螺旋的延伸之间可能存在第二个功能相关性较小的入口。这些结果确定了孔的细胞质口,并展示了它如何从细胞质中吸引Cl⁻离子。