Stephens Andrew D, Snider Chloe E, Bloom Kerry
a Department of Molecular Biosciences ; Northwestern University ; Evanston , IL USA.
Cell Cycle. 2015;14(14):2206-18. doi: 10.1080/15384101.2015.1046656. Epub 2015 May 6.
The pericentromere chromatin protrudes orthogonally from the sister-sister chromosome arm axis. Pericentric protrusions are organized in a series of loops with the centromere at the apex, maximizing its ability to interact with stochastically growing and shortening kinetochore microtubules. Each pericentromere loop is ∼50 kb in size and is organized further into secondary loops that are displaced from the primary spindle axis. Cohesin and condensin are integral to mechanisms of loop formation and generating resistance to outward forces from kinesin motors and anti-parallel spindle microtubules. A major unanswered question is how the boundary between chromosome arms and the pericentromere is established and maintained. We used sister chromatid separation and dynamics of LacO arrays distal to the pericentromere to address this issue. Perturbation of chromatin spring components results in 2 distinct phenotypes. In cohesin and condensin mutants sister pericentric LacO arrays separate a defined distance independent of spindle length. In the absence of Smt4, a peptidase that removes SUMO modifications from proteins, pericentric LacO arrays separate in proportion to spindle length increase. Deletion of Smt4, unlike depletion of cohesin and condensin, causes stretching of both proximal and distal pericentromere LacO arrays. The data suggest that the sumoylation state of chromatin topology adjusters, including cohesin, condensin, and topoisomerase II in the pericentromere, contribute to chromatin spring properties as well as the sister cohesion boundary.
着丝粒周围染色质从姐妹染色单体臂轴垂直突出。着丝粒周围的突出物以一系列环的形式组织,着丝粒位于顶端,最大限度地增强了其与随机生长和缩短的动粒微管相互作用的能力。每个着丝粒周围的环大小约为50 kb,并进一步组织成从初级纺锤体轴移位的次级环。黏连蛋白和凝缩蛋白对于环形成机制以及产生对抗驱动蛋白马达和反平行纺锤体微管向外力的阻力至关重要。一个主要未解决的问题是染色体臂和着丝粒周围区域之间的边界是如何建立和维持的。我们利用姐妹染色单体分离和着丝粒周围远端LacO阵列的动态变化来解决这个问题。染色质弹簧成分的扰动导致两种不同的表型。在黏连蛋白和凝缩蛋白突变体中,姐妹着丝粒周围的LacO阵列以与纺锤体长度无关的特定距离分离。在缺乏Smt4(一种从蛋白质上去除SUMO修饰的肽酶)的情况下,着丝粒周围的LacO阵列随纺锤体长度增加而按比例分离。与黏连蛋白和凝缩蛋白的缺失不同,Smt4的缺失会导致近端和远端着丝粒周围LacO阵列的拉伸。数据表明,包括着丝粒周围的黏连蛋白、凝缩蛋白和拓扑异构酶II在内的染色质拓扑结构调节因子的SUMO化状态,有助于染色质弹簧特性以及姐妹染色单体黏连边界。