Sanchez Joseph E, Gross Phillip G, Goetze Russell W, Walsh Richard M, Peeples William B, Wood Zachary A
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Biochemistry. 2015 Jun 2;54(21):3360-3369. doi: 10.1021/acs.biochem.5b00174. Epub 2015 May 21.
Ketopantoate reductase (KPR) catalyzes the NADPH-dependent production of pantoate, an essential precursor in the biosynthesis of coenzyme A. Previous structural studies have been limited to Escherichia coli KPR, a monomeric enzyme that follows a sequential ordered mechanism. Here we report the crystal structure of the Staphylococcus aureus enzyme at 1.8 Å resolution, the first description of a dimeric KPR. Using sedimentation velocity analysis, we show that the S. aureus KPR dimer is stable in solution. In fact, our structural analysis shows that the dimeric assembly we identify is present in the majority of KPR crystal structures. Steady state analysis of S. aureus KPR reveals strong positive cooperativity with respect to NADPH (Hill coefficient of 2.5). In contrast, high concentrations of the substrate ketopantoate (KP) inhibit the activity of the enzyme. These observations are consistent with a random addition mechanism in which the initial binding of NADPH is the kinetically preferred path. In fact, Förster resonance energy transfer studies of the equilibrium binding of NADPH show only a small degree of cooperativity between subunits (Hill coefficient of 1.3). Thus, the apparently strong cooperativity observed in substrate saturation curves is due to a kinetic process that favors NADPH binding first. This interpretation is consistent with our analysis of the A181L substitution, which increases the Km of ketopantoate 844-fold, without affecting kcat. The crystal structure of KPRA181L shows that the substitution displaces Ser239, which is known to be important for the binding affinity of KP. The decrease in KP affinity would enhance the already kinetically preferred NADPH binding path, making the random mechanism appear to be sequentially ordered and reducing the kinetic cooperativity. Consistent with this interpretation, the NADPH saturation curve for KPRA181L is hyperbolic.
α-酮泛解酸还原酶(KPR)催化依赖烟酰胺腺嘌呤二核苷酸磷酸(NADPH)生成泛解酸,泛解酸是辅酶A生物合成中的一种必需前体。先前的结构研究仅限于大肠杆菌KPR,这是一种遵循有序顺序机制的单体酶。在此,我们报告了金黄色葡萄球菌该酶的晶体结构,分辨率为1.8 Å,这是对二聚体KPR的首次描述。使用沉降速度分析,我们表明金黄色葡萄球菌KPR二聚体在溶液中是稳定的。事实上,我们的结构分析表明,我们鉴定出的二聚体组装存在于大多数KPR晶体结构中。金黄色葡萄球菌KPR的稳态分析显示,其对NADPH具有很强的正协同性(希尔系数为2.5)。相比之下,高浓度的底物α-酮泛解酸(KP)会抑制该酶的活性。这些观察结果与随机添加机制一致,其中NADPH的初始结合是动力学上优先的途径。事实上,对NADPH平衡结合的荧光共振能量转移研究表明,亚基之间只有很小程度的协同性(希尔系数为1.3)。因此,在底物饱和曲线中观察到的明显强协同性是由于一个有利于NADPH首先结合的动力学过程。这种解释与我们对A181L取代的分析一致,该取代使α-酮泛解酸的米氏常数增加了844倍,而不影响催化常数。KPRA181L的晶体结构表明,该取代使丝氨酸239发生位移,已知丝氨酸239对α-酮泛解酸的结合亲和力很重要。α-酮泛解酸亲和力的降低会增强已经在动力学上优先的NADPH结合途径,使随机机制看起来像是有序顺序的,并降低动力学协同性。与这种解释一致,KPRA181L的NADPH饱和曲线是双曲线型的。