Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602.
Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201.
Protein Sci. 2019 Jun;28(6):1106-1114. doi: 10.1002/pro.3625. Epub 2019 May 3.
Serving a critical role in neurotransmission, human acetylcholinesterase (hAChE) is the target of organophosphate nerve agents. Hence, there is an active interest in studying the mechanism of inhibition and recovery of enzymatic activity, which could lead to better countermeasures against nerve agents. As hAChE is found in different oligomeric assemblies, certain approaches to studying it have been problematic. Herein, we examine the biochemical and structural impact of monomerizing hAChE by using two mutations: L380R/F535K. The activities of monomeric hAChE L380R/F535K and dimeric hAChE were determined to be comparable utilizing a modified Ellman's assay. To investigate the influence of subunit-subunit interactions on the structure of hAChE, a 2.1 Å X-ray crystallographic structure was determined. Apart from minor shifts along the dimer interface, the overall structure of the hAChE L380R/F535K mutant is similar to that of dimeric hAChE. To probe whether the plasticity of the active site was overtly impacted by monomerizing hAChE, the kinetic constants of (P ) - VX (ethyl({2-[bis(propan-2-yl)amino]ethyl}sulfanyl)(methyl)phosphinate) inhibition and subsequent rescue of hAChE L380R/F535K activity with HI-6 (1-(2'-hydroxyiminomethyl-1'-pyridinium)-3-(4'-carbamoyl-1-pyridinium)) were determined and found to be comparable to those of dimeric hAChE. Thus, hAChE L380R/F535K could be used as a substitute for dimeric hAChE when experimentally probing the ability of the hAChE active site to accommodate future nerve agent threats or judge the ability of new therapeutics to access the active site.
乙酰胆碱酯酶(hAChE)在神经递质传递中起着关键作用,是有机磷神经毒剂的靶标。因此,人们对研究酶活性抑制和恢复的机制非常感兴趣,这可能会导致更好的对抗神经毒剂的对策。由于 hAChE 存在于不同的寡聚体组装中,因此某些研究方法存在问题。在这里,我们通过使用两种突变(L380R/F535K)来检查单体化 hAChE 的生化和结构影响。使用改良的 Ellman 测定法确定单体 hAChE L380R/F535K 和二聚体 hAChE 的活性相当。为了研究亚基-亚基相互作用对 hAChE 结构的影响,确定了一个 2.1 Å X 射线晶体结构。除了沿着二聚体界面的微小位移外,hAChE L380R/F535K 突变体的整体结构与二聚体 hAChE 的结构相似。为了探究活性位点的可塑性是否因单体化 hAChE 而明显受到影响,测定了(P)-VX(乙基({2-[双(异丙基)氨基]乙基}硫基)(甲基)膦酸酯)对 hAChE L380R/F535K 抑制的动力学常数,并用 HI-6(1-(2'-羟亚氨基甲基-1'-吡啶鎓)-3-(4'-氨基甲酰基-1-吡啶鎓))恢复 hAChE L380R/F535K 的活性,发现与二聚体 hAChE 的动力学常数相当。因此,当实验探测 hAChE 活性位点容纳未来神经毒剂威胁的能力或判断新疗法进入活性位点的能力时,hAChE L380R/F535K 可作为二聚体 hAChE 的替代品。