Panzacchi Manuela, Van Moorter Bram, Strand Olav, Saerens Marco, Kivimäki Ilkka, St Clair Colleen C, Herfindal Ivar, Boitani Luigi
Norwegian Institute for Nature Research, P.O. Box 5685 Sluppen, Trondheim, NO-7485, Norway.
ICTEAM/UCL, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
J Anim Ecol. 2016 Jan;85(1):32-42. doi: 10.1111/1365-2656.12386. Epub 2015 Aug 6.
The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species.
地球上各地栖息地的丧失、破碎化和退化促使人们越来越关注识别支持动物移动的景观特征(廊道)或阻碍动物移动的景观特征(屏障)。大多数用于预测廊道的算法都假定动物要么以最优方式(例如成本最低路径)要么像随机漫步者一样(例如当前模型)穿过首选栖息地,但这两种极端情况都不现实。我们提出廊道和屏障是同一枚硬币的两面,动物体验到的景观是时空动态的廊道 - 屏障连续体,连接(分隔)个体完成特定生态过程的功能区域。基于这一概念框架,我们提出了一种新颖的方法,利用基于个体的高分辨率移动数据来更真实地预测廊道 - 屏障连续体。我们的方法包含两项创新。首先,我们使用步长选择函数(SSF)来预测摩擦地图,以量化连续位置之间战术步长的廊道 - 屏障连续体。其次,我们将随机最短路径算法(RSP)引入运动生态学,该算法在摩擦地图上运行,以预测功能区域之间战略移动的廊道 - 屏障连续体。通过调节控制环境探索与最优利用之间权衡的参数Ѳ,RSP弥合了假定最优移动(当Ѳ接近无穷大时,RSP等同于LCP)或随机漫步(当Ѳ→0时,RSP→当前模型)的算法之间的差距。使用这种方法,我们识别出了挪威境内GPS监测的野生驯鹿(Rangifer t. tarandus)的迁徙廊道。我们证明,驯鹿的移动最好由Ѳ的中间值预测,这表明在优化与探索之间存在移动权衡。模型校准允许识别出与实证数据紧密拟合的廊道 - 屏障连续体,并证明RSP优于假定最优性或随机漫步的模型。所提出的方法对动物可能用于在真实景观中导航的多尺度认知地图进行建模,并推广了识别廊道最常用的算法。由于次优但非随机的移动策略可能广泛存在,我们的方法有潜力为广泛种类物种预测更真实的廊道 - 屏障连续体。