Getz Wayne M, Salter Richard, Sethi Varun, Cain Shlomo, Spiegel Orr, Toledo Sivan
Department Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA.
School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Durban, South Africa.
Mov Ecol. 2024 Sep 30;12(1):67. doi: 10.1186/s40462-024-00507-4.
Animal movement plays a key role in many ecological processes and has a direct influence on an individual's fitness at several scales of analysis (i.e., next-step, subdiel, day-by-day, seasonal). This highlights the need to dissect movement behavior at different spatio-temporal scales and develop hierarchical movement tools for generating realistic tracks to supplement existing single-temporal-scale simulators. In reality, animal movement paths are a concatenation of fundamental movement elements (FuMEs: e.g., a step or wing flap), but these are not generally extractable from a relocation time-series track (e.g., sequential GPS fixes) from which step-length (SL, aka velocity) and turning-angle (TA) time series can be extracted. For short, fixed-length segments of track, we generate their SL and TA statistics (e.g., means, standard deviations, correlations) to obtain segment-specific vectors that can be cluster into different types. We use the centroids of these clusters to obtain a set of statistical movement elements (StaMEs; e.g.,directed fast movement versus random slow movement elements) that we use as a basis for analyzing and simulating movement tracks. Our novel concept is that sequences of StaMEs provide a basis for constructing and fitting step-selection kernels at the scale of fixed-length canonical activity modes: short fixed-length sequences of interpretable activity such as dithering, ambling, directed walking, or running. Beyond this, variable length pure or characteristic mixtures of CAMs can be interpreted as behavioral activity modes (BAMs), such as gathering resources (a sequence of dithering and walking StaMEs) or beelining (a sequence of fast directed-walk StaMEs interspersed with vigilance and navigation stops). Here we formulate a multi-modal, step-selection kernel simulation framework, and construct a 2-mode movement simulator (Numerus ANIMOVER_1), using Numerus RAMP technology. These RAMPs run as stand alone applications: they require no coding but only the input of selected parameter values. They can also be used in R programming environments as virtual R packages. We illustrate our methods for extracting StaMEs from both ANIMOVER_1 simulated data and empirical data from two barn owls (Tyto alba) in the Harod Valley, Israel. Overall, our new bottom-up approach to path segmentation allows us to both dissect real movement tracks and generate realistic synthetic ones, thereby providing a general tool for testing hypothesis in movement ecology and simulating animal movement in diverse contexts such as evaluating an individual's response to landscape changes, release of an individual into a novel environment, or identifying when individuals are sick or unusually stressed.
动物运动在许多生态过程中起着关键作用,并在多个分析尺度(即下一步、亚日、每日、季节性)上对个体的适应性产生直接影响。这凸显了在不同时空尺度上剖析运动行为并开发分层运动工具以生成逼真轨迹以补充现有单时间尺度模拟器的必要性。实际上,动物运动路径是基本运动元素(FuMEs:例如一步或一次翅膀扇动)的串联,但这些通常无法从重新定位时间序列轨迹(例如连续的GPS定位)中提取,而从该轨迹中可以提取步长(SL,也称为速度)和转向角(TA)时间序列。对于短的、固定长度的轨迹段,我们生成它们的SL和TA统计量(例如均值、标准差、相关性),以获得可聚类为不同类型的特定段向量。我们使用这些聚类的质心来获得一组统计运动元素(StaMEs;例如定向快速运动与随机慢速运动元素),我们将其用作分析和模拟运动轨迹的基础。我们的新概念是,StaMEs序列为在固定长度的规范活动模式尺度上构建和拟合步选择核提供了基础:可解释活动的短固定长度序列,如抖动、缓行、定向行走或奔跑。除此之外,可变长度的纯CAMs或特征混合物可以解释为行为活动模式(BAMs),例如收集资源(抖动和行走StaMEs的序列)或直线飞行(穿插着警惕和导航停顿的快速定向行走StaMEs序列)。在这里,我们制定了一个多模态、步选择核模拟框架,并使用Numerus RAMP技术构建了一个双模式运动模拟器(Numerus ANIMOVER_1)。这些RAMP作为独立应用程序运行:它们不需要编码,只需要输入选定的参数值。它们也可以在R编程环境中作为虚拟R包使用。我们展示了从ANIMOVER_1模拟数据和来自以色列哈罗德山谷的两只仓鸮(Tyto alba)的经验数据中提取StaMEs的方法。总体而言,我们新的自下而上的路径分割方法使我们既能剖析真实的运动轨迹,又能生成逼真的合成轨迹,从而提供了一个通用工具,用于检验运动生态学中的假设,并在各种情况下模拟动物运动,例如评估个体对景观变化的反应、将个体释放到新环境中,或识别个体何时生病或异常紧张。