Brandão Fernanda Sofia Quintela da Silva, Parente Marco Paulo Lages, Rocha Paulo Alexandre Gomes Gonçalves, Saraiva Maria Teresa da Quinta E Costa de Mascarenhas, Ramos Isabel Maria Amorim Pereira, Natal Jorge Renato Manuel
a Department of Radiology , CHSJ-EPE/Faculty of Medicine, University of Porto , Alameda Professor Hernâni Monteiro, 4200-319 Porto , Portugal.
b INEGI, Faculty of Engineering, University of Porto , Rua Dr. Roberto Frias s/n, 4200-465 Porto , Portugal.
Comput Methods Biomech Biomed Engin. 2016;19(4):347-56. doi: 10.1080/10255842.2015.1028031. Epub 2015 May 8.
We performed numerical simulation of voluntary contraction of the pelvic floor muscles to evaluate the resulting displacements of the organs and muscles. Structures were segmented in Magnetic Resonance (MR) images. Different material properties and constitutive models were attributed. The Finite Element Method was applied, and displacements were compared with dynamic MRI findings. Numerical simulation showed muscle magnitude displacement ranging from 0 to 7.9 mm, more evident in the posterior area. Accordingly, the anorectum moved more than the uterus and bladder. Dynamic MRI showed less 0.2 mm and 4.1 mm muscle dislocation in the anterior and cranial directions, respectively. Applications of this model include evaluating muscle impairment, subject-specific mesh implant planning, or effectiveness of rehabilitation.
我们对盆底肌肉的自主收缩进行了数值模拟,以评估由此产生的器官和肌肉位移。在磁共振(MR)图像中对结构进行了分割。赋予了不同的材料特性和本构模型。应用了有限元方法,并将位移与动态MRI结果进行了比较。数值模拟显示肌肉位移幅度在0至7.9毫米之间,在后部区域更为明显。因此,肛门直肠的移动比子宫和膀胱更多。动态MRI显示在前后方向和头侧方向的肌肉脱位分别小于0.2毫米和4.1毫米。该模型的应用包括评估肌肉损伤、针对个体的网状植入物规划或康复效果。